OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy

Yong-Eun Lee Koo, Wenzhe Fan, Hoejin Hah, Hao Xu, Dan Orringer, Brian Ross, Alnawaz Rehemtulla, Martin A. Philbert, and Raoul Kopelman  »View Author Affiliations

Applied Optics, Vol. 46, Issue 10, pp. 1924-1930 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanoparticle-based photonic explorers have been developed for intracellular sensing and photodynamic therapy (PDT). The design employs nanoparticles made of various matrices as multifunctional nanoplatforms, loading active components by encapsulation or covalent attachment. The nanoplatform for biosensing has been successfully applied to intracellular measurements of important ionic and molecular species. The nanoplatform for PDT has shown high therapeutic efficacy in a rat 9L gliosarcoma model. Specifically, a multifunctional nanoplatform that encompasses magnetic resonance imaging (MRI) and PDT agents inside, as well as targeting ligands on the surface, has been developed and applied in vivo, resulting in much improved MRI contrast enhancement and PDT efficacy.

© 2007 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Optical nanotechnology

Original Manuscript: June 30, 2006
Revised Manuscript: October 13, 2006
Manuscript Accepted: October 16, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Yong-Eun Lee Koo, Wenzhe Fan, Hoejin Hah, Hao Xu, Dan Orringer, Brian Ross, Alnawaz Rehemtulla, Martin A. Philbert, and Raoul Kopelman, "Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy," Appl. Opt. 46, 1924-1930 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. P. Haugland, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies (Molecular Probes, 2005).
  2. B. M. Cullum and T. Vo-Dinh, "The development of optical nanosensors for biological measurements," Trends Biotechnol. 18, 388-393 (2000). [CrossRef] [PubMed]
  3. S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, and R. Kopelman, "Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells," Special Issue, E. Bakker and E. Pretsch, eds., Talanta 63, 41-59 (2004). [CrossRef]
  4. H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998). [CrossRef]
  5. H. A. Clark, M. Hoyer, M. A. Philbert, and R. Kopelman, "Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors," Anal. Chem. 71, 4831-4836 (1999). [CrossRef] [PubMed]
  6. H. A. Clark, R. Kopelman, R. Tjalkens, and M. A. Philbert, "Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors," Anal. Chem. 71, 4837-4843 (1999). [CrossRef] [PubMed]
  7. H. Xu, J. W. Aylott, and R. Kopelman, "Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging," Analyst 127, 1471-1477 (2002). [CrossRef] [PubMed]
  8. J. P. Sumner, J. W. Aylott, E. Monson, and R. Kopelman, "A fluorescent PEBBLE nanosensor for intracellular free zinc," Analyst 127, 11-16 (2002). [CrossRef] [PubMed]
  9. E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman, "Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells," Anal. Chem. 75, 3784-3791 (2003). [CrossRef] [PubMed]
  10. M. King and R. Kopelman, "Development of a hydroxyl radical ratiometric nanoprobe," Sens. Actuators B 90, 76-81 (2003). [CrossRef]
  11. J. Sumner and R. Kopelman, "Alexa Fluor 488 as an iron sensitive indicator and its application in PEBBLE nanosensors," Analyst 130, 528-533 (2005). [CrossRef] [PubMed]
  12. J. P. Sumner, N. Westerberg, A. K. Stoddard, C. A. Fierke, and R. Kopelman, "Cu+ and Cu2+ sensitive PEBBLE fluorescent nanosensors using Ds red as the recognition element," Sens. Actuators B 113, 760-767 (2005). [CrossRef]
  13. H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, and M. A. Philbert, "A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma," Anal. Chem. 73, 4124-4133 (2001). [CrossRef] [PubMed]
  14. Y.-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, and M. A. Philbert, "Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors," Anal. Chem. 76, 2498-2505 (2004). [CrossRef] [PubMed]
  15. Y. Cao, Y.-E. L. Koo, S. Koo, and R. Kopelman, "Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms," Photochem. Photobiol. 81, 1489-1498 (2005). [CrossRef] [PubMed]
  16. Y. Cao, Y.-E. L. Koo, and R. Kopelman, "Poly (Decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples," Analyst 129, 745-750 (2004). [CrossRef] [PubMed]
  17. M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens, and M. A. Philbert, "Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells," Anal. Chem. 73, 2221-2228 (2001). [CrossRef] [PubMed]
  18. M. Brasuel, R. Kopelman, I. Kasman, T. J. Miller, and M. A. Philbert, "Ion concentrations in live cells from highly selective ion correlations fluorescent nanosensors for sodium," in Proceedings of IEEE Conference on Sensors (IEEE, 2002) pp. 288-292.
  19. M. G. Brasuel, T. J. Miller, R. Kopelman, and M. A. Philbert, "Liquid polymer nano-PEBBLES for Cl analysis and biological applications," Analyst 128, 1262-1267 (2003). [CrossRef] [PubMed]
  20. J. A. Harrell and R. Kopelman, "Biocompatible probes measure intracellular activity," Biophotonics Int. 7, 22-24 (2000).
  21. J. N. Anker, C. Behrend, and R. Kopelman, "Aspherical magnetically modulated optical nanoprobes (MagMOONs)," J. Appl. Phys. 93, 6698-6700 (2003). [CrossRef]
  22. J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003). [CrossRef]
  23. C. J. Behrend, J. N. Anker, and R. Kopelman, "Brownian modulated optical nanoprobes," Appl. Phys. Lett. 84, 154-156 (2004). [CrossRef]
  24. B. H. McNaughton, K. A. Kehbein, J. N. Anker, and R. Kopelman, "Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing," J. Phys. Chem. B 110, 18958-18964 (2006). [CrossRef] [PubMed]
  25. N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006). [CrossRef]
  26. M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003). [CrossRef]
  27. F. Yan and R. Kopelman, "The Embedding of meta-Tetra (hydroxyphenyl) Chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH dependent optical properties," Photochem. Photobiol. 78, 587-591 (2003). [CrossRef]
  28. I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003). [CrossRef] [PubMed]
  29. W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, "Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms," Photochem. Photobiol. 81, 242-249 (2005). [CrossRef]
  30. A. Samia, S. Dayal, and C. Burda, "Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy," Photochem. Photobiol. 82, 617-625 (2006). [CrossRef] [PubMed]
  31. S. Wang, R. Gao, F. Zhou, and M. Selke, "Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy," J. Mater. Chem. 14, 487-493 (2004). [CrossRef]
  32. D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002). [CrossRef]
  33. Y. N. Konan, R. Gurny, and E. Allémann, "State of the art in the delivery of photosensitizers for photodynamic therapy," J. Photochem. Photobiol. , B 66, 89-106 (2002). [CrossRef]
  34. H. Li, D. E. Marotta, S. Kim, T. M. Busch, E. P. Wileyto, and G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 041203-1-041203-7 (2005).
  35. R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005). [CrossRef]
  36. B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).
  37. B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003). [CrossRef]
  38. G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006). [CrossRef] [PubMed]
  39. M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, and L. Josephson, "A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation," Cancer Res. 63, 8122-8125 (2003). [PubMed]
  40. S. M. Moghimi, A. C. Hunter, and J. C. Murray, "Long circulating and target-specific nanoparticles: theory to practice," Pharmacol. Rev. 53, 283-318 (2001). [PubMed]
  41. R. J. Schneider II, "Characterization of polyacrylamide nanoparticles for biomedical applications: toxicology, pharmacology, and therapy," Ph.D. dissertation (University of Michigan, Ann Arbor, 2005).
  42. J. Denekamp, "Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy," Br. J. Radiol. 66, 181-96 (1993). [CrossRef] [PubMed]
  43. Q. Peng and J. M. Nesland, "Effects of photodynamic therapy on tumor stroma," Ultrastruct. Pathol. 28, 333-340 (2004). [CrossRef]
  44. P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999). [PubMed]
  45. H. Hah, W. Fan, Y, Koo, H. Xu, D. Orringer, M. Philbert, and R. Kopelman (Department of Chemistry, University of Michigan, Ann Arbor, MI 48109) are preparing a paper to be called "Blue dye loaded silica nanoparticle for visual delineation of tumor margin and PDT."

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited