OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry

Bryan A. Franz, Sean W. Bailey, P. Jeremy Werdell, and Charles R. McClain  »View Author Affiliations


Applied Optics, Vol. 46, Issue 22, pp. 5068-5082 (2007)
http://dx.doi.org/10.1364/AO.46.005068


View Full Text Article

Enhanced HTML    Acrobat PDF (1053 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The retrieval of ocean color radiometry from space-based sensors requires on-orbit vicarious calibration to achieve the level of accuracy desired for quantitative oceanographic applications. The approach developed by the NASA Ocean Biology Processing Group (OBPG) adjusts the integrated instrument and atmospheric correction system to retrieve normalized water-leaving radiances that are in agreement with ground truth measurements. The method is independent of the satellite sensor or the source of the ground truth data, but it is specific to the atmospheric correction algorithm. The OBPG vicarious calibration approach is described in detail, and results are presented for the operational calibration of SeaWiFS using data from the Marine Optical Buoy (MOBY) and observations of clear-water sites in the South Pacific and southern Indian Ocean. It is shown that the vicarious calibration allows SeaWiFS to reproduce the MOBY radiances and achieve good agreement with radiometric and chlorophyll a measurements from independent in situ sources. We also find that the derived vicarious gains show no significant temporal or geometric dependencies, and that the mission-average calibration reaches stability after 20 40 high-quality calibration samples. Finally, we demonstrate that the performance of the vicariously calibrated retrieval system is relatively insensitive to the assumptions inherent in our approach.

© 2007 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Remote Sensing

History
Original Manuscript: February 5, 2007
Revised Manuscript: April 2, 2007
Manuscript Accepted: April 3, 2007
Published: July 9, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Bryan A. Franz, Sean W. Bailey, P. Jeremy Werdell, and Charles R. McClain, "Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry," Appl. Opt. 46, 5068-5082 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-22-5068


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, and N. Kuring, "Science quality seawifs data for global biosphere research," Sea Technol. 39, 10-16 (1998).
  2. W. E. Esaias, M. R. Abbot, I. J. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, and P. J. Minnett, "An overview of MODIS capabilities for ocean science observations," IEEE Trans. Geosci. Remote Sens. 36, 1250-1265 (1998). [CrossRef]
  3. B. C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, "Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space," Appl. Opt. 39, 887-896 (2000). [CrossRef]
  4. D. Antoine and A. Morel, "A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (meris instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones," Int. J. Remote Sens. 20, 1875-1916 (1999). [CrossRef]
  5. H. R. Gordon and M. Wang, "Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm," Appl. Opt. 33, 443-452 (1994). [CrossRef] [PubMed]
  6. H. R. Gordon, "In-orbit calibration strategy for ocean color sensors," Remote Sens. Environ. 63, 265-278 (1998). [CrossRef]
  7. R. E. Eplee Jr., W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, "Calibration of SeaWiFS. II. vicarious techniqes," Appl. Opt. 40, 6701-6718 (2001). [CrossRef]
  8. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, "An overview of SeaWiFS and ocean color," NASA Tech. Memo. 104566 , National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (1992).
  9. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, "Validation of atmospheric correction over the oceans," J. Geophys. Res. 102, 17209-17217 (1997). [CrossRef]
  10. F. S. Patt, R. A. Barnes, R. E. Eplee Jr., B. A. Franz, W. D. Robinson, G. C. Feldman, S. W. Bailey, J. Gales, P. J. Werdell, M. Wang, R. Frouin, R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, V. Ransibrahmanakul, J. E. O'Reilly, and J. A. Yoder, "Algorithm updates for the Fourth SeaWiFS data reprocessing," NASA Tech. Memo. 206892 , National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (2003).
  11. B. A. Franz, P. J. Werdell, G. Meister, S. W. Bailey, R. E. Eplee, G. C. Feldman, E. Kwiatkowska, C. R. McClain, F. S. Patt, and D. Thomas, "The continuity of ocean color measurements from SeaWiFS to MODIS" 5882, 1-13 (2005).
  12. M. Wang, "The Rayleigh lookup tables for the SeaWIFS data processing: accounting for the effects of ocean surface roughness," Int. J. Remote Sens. 23, 2693-2702 (2002). [CrossRef]
  13. M. Wang, "A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure," Int. J. Remote Sens. 26, 5651-5653 (2005). [CrossRef]
  14. H. R. Gordon and M. Wang, "Influence of oceanic whitecaps on atmospheric correction of SeaWiFS," Appl. Opt. 33, 7754-7763 (1994). [CrossRef] [PubMed]
  15. R. Frouin, M. Schwindling, and P. Y. Dechamps, "Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing implications," J. Geophys. Res. 101, 14361-14371 (1997). [CrossRef]
  16. K. D. Moore, K. J. Voss, and H. R. Gordon, "Spectral reflectance of whitecaps: their contribution to water-leaving radiance," J. Geophys. Res. 105, 6493-6499 (2000). [CrossRef]
  17. M. Wang, "Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance," Appl. Opt. 38, 451-455 (1999). [CrossRef]
  18. H. R. Gordon, T. Du, and T. Zhang, "Atmospheric correction of ocean color sensors: analysis of the effects of residual instrument polarization sensitivity," Appl. Opt. 36, 6938-6948 (1997).
  19. G. Meister, E. J. Kwiatkowska, B. A. Franz, F. S. Patt, G. C. Feldman, and C. R. McClain, "Moderate-resolution imaging spectroradiometer ocean color polarization correction," Appl. Opt. 44, 5524-5535 (2005). [CrossRef] [PubMed]
  20. R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, "A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from seawifs in coastal waters," NASA Tech. Memo. 206892 , National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (2003).
  21. H. R. Gordon, "Clear water radiances for atmospheric correction of coastal zone color scanner imagery," Appl. Opt. 20, 4175-4180 (1981). [CrossRef] [PubMed]
  22. Astronomical Almanac (U.S. Government Printing Office, 1984).
  23. A. Morel, D. Antoine, and B. Gentilli, "Bidirectional reflectance of oceanic waters: accounting for Ramen emission and varying particle scattering phase function," Appl. Opt. 41, 6289-6306 (2002). [CrossRef] [PubMed]
  24. H. R. Gordon, "Normalized water-leaving radiance: revisiting the influence of surface roughness," Appl. Opt. 44, 241-248 (2005). [CrossRef] [PubMed]
  25. M. Wang, "Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance," Appl. Opt. 45, 4122-4128 (2006). [CrossRef] [PubMed]
  26. M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, "Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean," Appl. Opt. 40, 343-348 (2001). [CrossRef]
  27. H. R. Gordon, "Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response," Appl. Opt. 34, 8363-8374 (1995). [CrossRef] [PubMed]
  28. J. E. O'Reilly, S. Maritorena, D. A. Siegel, M. C. O'Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, "Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4," NASA Tech. Memo. 206892 , National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (2000).
  29. B. A. Franz, E. J. Ainsworth, and S. W. Bailey, "SeaWiFS vicarious calibration: an alternative approach utilizing simultaneous in situ observations of oceanic and atmospheric optical properties," NASA Tech. Memo. 209982 , National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (2001).
  30. E. P. Shettle and R. W. Fenn, Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties, vol. ADA085951 of Environmental Research Papers (Air Force Geophysics Laboratory Hanscom AFB, 1979).
  31. A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, "Optical properties of the 'clearest' natural waters," Limnol. Oceanogr. 52, 217-229 (2007). [CrossRef]
  32. B. Fougnie, P. Henry, A. Morel, D. Antoine, and F. Montagner, "Identification and characterization of stable homogeneous oceanic zones: climatology and impact on in-flight calibration of space sensors over Rayleigh scattering," in Proceedings of Ocean Optics XVI (Oceanography Society, 2002).
  33. A. Higurashi, T. Nakajima, B. N. Holben, A. Smirnov, R. Frouin, and B. Chatenet, "A study of global aerosol optical climatology with two-channel avhrr remote sensing," J. Clim. 13, 2011-2027 (2000). [CrossRef]
  34. J. L. Mueller, D. K. Clark, V. S. Kuwahara, G. Lazin, S. Brown, G. S. Fargion, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, M. Yuen, P. G. Strutton, T. D. Dickey, M. R. Abbott, R. M. Letelier, M. R. Lewis, S. McLean, F. P. Chavez, J. R. M. A. Barnard, A. Subramaniam, D. Manov, X. Zheng, J. L. W. Harding, R. A. Barnes, and K. R. Lykke, "Ocean optics protocols for satellite ocean color sensor validation, Revision 4: Special topics in ocean optics protocols and appendices," NASA Tech. Memo. 2004-21621 , National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (2003).
  35. R. Frouin, D. W. Ligner, and C. Gautier, "A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface," J. Geophys. Res. 94, 9731-9742 (1989). [CrossRef]
  36. S. W. Bailey and P. J. Werdell, "A multi-sensor approach for the on-orbit validation of ocean color satellite data products," Remote Sens. Environ. 102, 12-23 (2006). [CrossRef]
  37. R. A. Barnes, R. E. Eplee, F. S. Patt, H. H. Kieffer, T. C. Stone, G. Meister, J. J. Butler, and C. R. McClain, "Comparison of SeaWiFS measurements of the moon with the U.S. geological survey lunar model," Appl. Opt. 43, 5838-5854 (2002). [CrossRef]
  38. J. L. Mueller, A. Morel, R. Frouin, C. Davis, R. Arnone, K. Carder, Z. Lee, R. G. Steward, S. B. Hooker, C. D. Mobley, S. McLean, B. Holben, M. Miller, C. Pietras, K. D. Knobelspiesse, G. S. Fargion, J. Porter, and K. Voss, "Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Volume III: Radiometric measurements and data analysis protocols," NASA Tech. Memo. 2003-21621 , National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (2003).
  39. P. J. Werdell, S. W. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, "Unique data repository facilitates ocean color satellite validation," EOS Trans. Am. Geophys. Union 84 (2003) p. 379 and 385. [CrossRef]
  40. R. A. Barnes and E. F. Zalewski, "Reflectance-based calibration of seawifs II. conversion to radiance," Appl. Opt. 42, 1648-1660 (2003). [CrossRef] [PubMed]
  41. M. Wang and H. R. Gordon, "Calibration of ocean color scanners: how much error is acceptable in the near infrared?" Remote Sens. Environ. 82, 497-504 (2002). [CrossRef]
  42. N. Martiny, R. Frouin, and R. Santer, "Radiometric calibration of SeaWiFS in the near infrared," Appl. Opt. 44, 7828-7844 (2005). [CrossRef] [PubMed]
  43. R. Green and T. G. Chrien, "High altitude measurements of radiance at high spectral and spatial resolution for SIMBIOS sensor calibration, validation and intercomparisons," NASA Tech. Memo. 208645 , National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited