OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements

Ziauddin Ahmad, Charles R. McClain, Jay R. Herman, Bryan A. Franz, Ewa J. Kwiatkowska, Wayne D. Robinson, Eric J. Bucsela, and Maria Tzortziou  »View Author Affiliations


Applied Optics, Vol. 46, Issue 26, pp. 6504-6512 (2007)
http://dx.doi.org/10.1364/AO.46.006504


View Full Text Article

Enhanced HTML    Acrobat PDF (2401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption by atmospheric nitrogen dioxide ( NO 2 ) gas in the visible has been traditionally neglected in the retrieval of oceanic parameters from satellite measurements. Recent measurements of NO 2 from spaceborne sensors show that over the Eastern United States the NO 2 column amount often exceeds 1 Dobson Unit ( 2.69 × 10 16 molecules / cm 2 ) . Our radiative transfer sensitivity calculations show that under high NO 2 conditions ( 1 × 10 16 molecules / cm 2 ) the error in top-of-atmosphere (TOA) reflectance in the blue channels of the sea-viewing wide field-of-view sensor (SeaWiFS) and moderate-resolution imaging spectroradiometer (MODIS) sensors is approximately 1%. This translates into approximately 10% error in water-leaving radiance for clear waters and to higher values ( > 20 % ) in the coastal areas. We have developed an atmospheric-correction algorithm that allows an accurate retrieval of normalized water-leaving radiances (nLws) in the presence of NO 2 in the atmosphere. The application of the algorithm to 52 MODIS scenes over the Chesapeake Bay area show a decrease in the frequency of negative nLw estimates in the 412   nm band and an increase in the value of nLws in the same band. For the particular scene reported in this paper, the mean value of nLws in the 412   nm band increased by 17%, which is significant, because for the MODIS sensor the error in nLws attributable to the digitization error in the observed TOA reflectance over case 2 waters is 2 .5% .

© 2007 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.1310) Scattering : Atmospheric scattering
(290.4210) Scattering : Multiple scattering
(290.5890) Scattering : Scattering, stimulated

ToC Category:
Scattering

History
Original Manuscript: January 19, 2007
Revised Manuscript: March 26, 2007
Manuscript Accepted: April 3, 2007
Published: September 5, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Ziauddin Ahmad, Charles R. McClain, Jay R. Herman, Bryan A. Franz, Ewa J. Kwiatkowska, Wayne D. Robinson, Eric J. Bucsela, and Maria Tzortziou, "Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements," Appl. Opt. 46, 6504-6512 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-26-6504


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Solomon, R. W. Portmann, R. W. Saders, J. S. Daniel, D. W. Madsen, B. Bartram, and E. G. Dutton, "On the role of nitrogen dioxide in the absorption of the solar radiation," J. Geophys. Res. 99, 12047-12058 (1999). [CrossRef]
  2. A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Folly, M. F. Merienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998). [CrossRef]
  3. C. Leue, M. Wenig, T. Wagner, O. Klimm, U. Platt, and B. Jahne, "Quantitative analysis of NOx emissions from Global Ozone Monitoring Experiment satellite image sequences," J. Geophys. Res. 106, 5493-5505 (2001). [CrossRef]
  4. L. Jaegle, D. J. Jacob, Y. Wang, A. J. Weinheimer, B. A. Ridley, T. L. Campos, G. W. Sachse, and D. E. Hagen, "Sources and chemistry of NOx in the upper troposphere over the United States," Geophys. Res. Lett. 25, 1705-1708 (1998). [CrossRef]
  5. A. Stohl, H. Huntrieser, A. Richter, S. Beirle, O. R. Cooper, S. Eckhardt, C. Forster, P. James, N. Spichtinger, M. Wenig, T. Wagner, J. P. Burrows, and U. Platt, "Rapid intercontinental air pollution transport associated with a meteorological bomb," Atmos. Chem. Phys. 3, 969-985 (2003). [CrossRef]
  6. D. Schaub, A. K. Weiss, J. W. Kaiser, A. Petritoli, A. Richter, B. Buchmann, and J. P. Burrows, "A transboundary transport episode of nitrogen dioxide as observed from GOME and its impact in the Alpine region," Atmos. Chem. Phys. 5, 23-37 (2005). [CrossRef]
  7. N. Spichtinger, M. Wenig, P. James, T. Wagner, U. Platt, and A. Stohl, "Satellite detection of a continental-scale plume of nitrogen oxides from boreal forest fires," Geophys. Res. Lett. 28, 4579-4582 (2001). [CrossRef]
  8. A. Cede, J. Herman, A. Richter, N. Krotkov, and J. Burrows, "Measurements of nitrogen dioxide total column amounts at Goddard space flight center using a brewer spectrometer in direct sun mode," J. Geophys. Res. 111, D05304 (2006). [CrossRef]
  9. Z. Ahmad and R. S. Fraser, "An iterative radiative transfer code for ocean-atmosphere systems," J. Atmos. Sci. 39, 656-665 (1982). [CrossRef]
  10. G. Thuillier, M. Herse, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, "The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions," Sol. Phys. 214, 1-22 (2003). [CrossRef]
  11. R. A. Barnes, W. L. Barnes, W. E. Esaias, and C. McClain, "Prelaunch acceptance report for the SeaWiFS radiometer," NASA Technical Memorandum 104566, Vol. 22 (1994).
  12. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. McClain, and T. Svitek, "SeaWiFS prelaunch radiometric calibration and spectral characterization," NASA Technical Memorandum 104566, Vol. 23 (1994).
  13. H. R. Gordon, "Atmospheric correction of ocean color imagery in the Earth Observing System era," J. Geophys. Res. 102, 17081-17106 (1997). [CrossRef]
  14. J. Elterman, "Parameters for attenuation in the atmospheric windows for fifteen wavelengths," Appl. Opt. 3, 745-749 (1964). [CrossRef]
  15. E. P. Shettle and R. W. Fenn, "Models for the aerosols of the lower atmosphere and the effect of the humidity variation on their optical properties," Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysical Laboratory, Hanscomb Air Force Base, Mass., 1997).
  16. E. J. Bucsela, E. A. Celarier, M. O. Wenig, J. F. Gleason, J. P. Veefkind, K. F. Boersma, and E. J. Brinksma, "Algorithm for NO2 vertical column retrieval from ozone monitoring instrument," IEEE Trans. Geosci. Remote Sens. 44, 1245-1258 (2006). [CrossRef]
  17. C. Cox and W. H. Munk, "The measurement of roughness of the sea surface from photographs of the sun glitter," J. Opt. Soc. Am. 44, 838-850 (1954). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited