OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 4 — Apr. 23, 2008

Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging

Artur Bednarkiewicz, Mounir Bouhifd, and Maurice P. Whelan  »View Author Affiliations

Applied Optics, Vol. 47, Issue 9, pp. 1193-1199 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (5193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-domain fluorescence lifetime imaging (FLIM) and hyper-spectral imaging (HSI) are two advanced microscopy techniques widely used in biological studies. Typically both FLIM and HSI are performed with either a whole-field or raster-scanning approach, which often prove to be technically complex and expensive, requiring the user to accept a compromise among precision, speed, and spatial resolution. We propose the use of a digital micromirror device (DMD) as a spatial illuminator for time-domain FLIM and HSI with a laser diode excitation source. The rather unique features of the DMD allow both random and parallel access to regions of interest (ROIs) on the sample, in a very rapid and repeatable fashion. As a consequence both spectral and lifetime images can be acquired with a precision normally associated with single-point systems but with a high degree of flexibility in their spatial construction. In addition, the DMD system offers a very efficient way of implementing a global analysis approach for FLIM, where average fluorescence decay parameters are first acquired for a ROI and then used as initial estimates in determining their spatial distribution within the ROI. Experimental results obtained on phantoms employing fluorescent dyes clearly show how the DMD method supports both spectral and temporal separation for target identification in HSI and FLIM, respectively.

© 2008 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 6, 2007
Manuscript Accepted: December 13, 2007
Published: March 17, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Artur Bednarkiewicz, Mounir Bouhifd, and Maurice P. Whelan, "Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging," Appl. Opt. 47, 1193-1199 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” Adv. Biochem. Eng./Biotechnol. 95, 245-265 (2005).
  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic, 1999).
  3. D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Siegel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, “Time domain fluorescence lifetime imaging applied to biological tissue,” Photochem. Photobiol. Sci. 3, 795-801 (2004). [CrossRef] [PubMed]
  4. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50-64 (2000). [CrossRef]
  5. P. R. Barber, B. Vojnovic, G. Atkin, F. M. Daley, S. A. Everett, G. D. Wilson, and J. D. Gilbey, “Applications of cost-effective spectral imaging microscopy in cancer research,” J. Phys. D 36, 1729-1738 (2003). [CrossRef]
  6. M. Bouhifd, M. P. Whelan, and M. Aprahamian, “Fluorescence imaging spectroscopy utilising acousto-optic tunable filters,” Proc. SPIE 5826, 185-193 (2005). [CrossRef]
  7. B. W. Pogue, S. L. Gibbs, B. Chen, and M. Savellano, “Fluorescence imaging in vivo: raster scanned point source imaging provides more accurate quantification than broad beam geometries,” Technol. Cancer Res. Treat. 3, 15-21 (2004). [PubMed]
  8. N. Ramanujam, J. X. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, “Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying spot scanner,” IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001). [CrossRef] [PubMed]
  9. J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A. A. Neil, G. W. H. Stamp, P. M. W. French, P. A. Kellett, J. D. Hares, and A. K. L. Dymoke-Bradshaw, “High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging,” Opt. Lett. 29, 2249-2251(2004). [CrossRef] [PubMed]
  10. D. S. Elson, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Lever, P. M. W. French, K. Lauritsen, M. Wahl, and R. Erdmann, “Fluorescence lifetime system for microscopy and multiwell plate imaging with blue picosecond diode laser,” Opt. Lett. 27, 1409-1411 (2002). [CrossRef]
  11. Y. Zhang, S. A. Soper, L. R. Middendorf, J. A. Wurm, R. Erdmann, and M. Wahl, “Simple near-infrared time-correlated single photon counting instrument with a pulsed diode laser and avalanche photodiode for time-resolved measurements in scanning applications,” Appl. Spectrosc. 53, 497-504(1999). [CrossRef]
  12. M. Kress, T. Meier, R. Steiner, F. Dolp, R. Erdmann, U. Ortmann, and A. Rück, “Time-resolved microspectrofluorometry and fluorescence lifetime imaging of photosensitizers using picosecond pulsed diode lasers in laser scanning microscopes,” J Biomed. Opt. 8, 26-32 (2003). [CrossRef] [PubMed]
  13. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-25 (2003). [CrossRef]
  14. Q. S. Hanley, O. J. Verveer, and T. M. Jovin, “Optical sectioning fluorescence spectroscopy in a programmable array microscope,” Appl. Spectrosc. 52, 783-789 (1998). [CrossRef]
  15. Q. S. Hanley, K. A. Lidke, R. Heintzmann, D. J. Arngt-Jovin, and T. M. Jovin, “Fluorescence lifetime imaging in an optically sectioning programmable array microscope (PAM),” Cytometry 67A, 112-118 (2005). [CrossRef]
  16. K. K. Sharman and A. Periasamy, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71, 947-952(1999). [CrossRef] [PubMed]
  17. S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. De Graff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73, 4486-4490 (2001). [CrossRef] [PubMed]
  18. G. Nishimura and M. Tamura, “Artefacts in the analysis of temporal response functions measured by photon counting,” Phys. Med. Biol. 50, 1327-1342 (2005). [CrossRef] [PubMed]
  19. R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. F. Van Noorden, and E. M. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25, 249-253 (2007). [CrossRef] [PubMed]
  20. R. Höfling and E. Ahl, “ALP: universal DMD controller for metrology and testing,” Proc. SPIE 5289B, 322-329 (2004). [CrossRef]
  21. S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807-2817(2004). [CrossRef] [PubMed]
  22. A. Bednarkiewicz and M. P. Whelan, “Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator,” J. Biomed. Opt. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited