Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor

Not Accessible

Your library or personal account may give you access

Abstract

A localized surface plasmon resonance based fiber optic sensor for refractive index sensing has been analyzed theoretically. The effects of size of the spherical metal nanoparticle as well as the light sources on the performance of the sensor have been studied rigorously. It is observed that a diffuse light source along with an intensity modulation method gives better performance in terms of sensing range. In addition, the use of a diffuse source makes the sensing device very cheap and compact, which is an important issue for the commercial applications. The refractive index range of the sensor is larger than the ranges reported for various types of fiber optic sensors utilizing intensity modulation.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Study of localized surface-plasmon-resonance-based optical fiber sensor

Rani Dutta, Reshma Bharadwaj, Soumyo Mukherji, and Tapanendu Kundu
Appl. Opt. 50(25) E138-E144 (2011)

Tapered optical fiber sensor based on localized surface plasmon resonance

Hsing-Ying Lin, Chen-Han Huang, Gia-Ling Cheng, Nan-Kuang Chen, and Hsiang-Chen Chui
Opt. Express 20(19) 21693-21701 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved