OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

Suppression of the zero-order term in off-axis digital holography through nonlinear filtering

Nicolas Pavillon, Chandra Sekhar Seelamantula, Jonas Kühn, Michael Unser, and Christian Depeursinge  »View Author Affiliations


Applied Optics, Vol. 48, Issue 34, pp. H186-H195 (2009)
http://dx.doi.org/10.1364/AO.48.00H186


View Full Text Article

Enhanced HTML    Acrobat PDF (1160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present experimental validation of a new reconstruction method for off-axis digital holographic microscopy (DHM). This method effectively suppresses the object autocorrelation, namely, the zero-order term, from holographic data, thereby improving the reconstruction bandwidth of complex wavefronts. The algorithm is based on nonlinear filtering and can be applied to standard DHM setups with realistic recording conditions. We study the robustness of the technique under different experimental configurations, and quantitatively demonstrate its enhancement capabilities on phase signals.

© 2009 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.3170) Microscopy : Interference microscopy
(090.1995) Holography : Digital holography
(100.3175) Image processing : Interferometric imaging

History
Original Manuscript: September 21, 2009
Revised Manuscript: October 21, 2009
Manuscript Accepted: October 22, 2009
Published: November 9, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Nicolas Pavillon, Chandra Sekhar Seelamantula, Jonas Kühn, Michael Unser, and Christian Depeursinge, "Suppression of the zero-order term in off-axis digital holography through nonlinear filtering," Appl. Opt. 48, H186-H195 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-34-H186


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Zero-order-free image reconstruction in digital holographic microscopy,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2009), pp. 201-204.
  2. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  3. U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). [CrossRef]
  4. O. Coquoz, R. Conde, F. Taleblou, and C. Depeursinge, “Performances of endoscopic holography with a multicore optical fiber,” Appl. Opt. 34, 7186-7193 (1995). [CrossRef]
  5. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008). [CrossRef]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef]
  7. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008). [CrossRef]
  8. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
  9. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  10. P. Picart and J. Leval, “General theoretical formulation of image formation in digital fresnel holography,” J. Opt. Soc. Am. A 25, 1744-1761 (2008). [CrossRef]
  11. D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948). [CrossRef]
  12. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962). [CrossRef]
  13. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  14. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999). [CrossRef]
  15. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef]
  16. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999). [CrossRef]
  17. L. Cai, Q. Liu, and X. Yang, “Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps,” Opt. Lett. 28, 1808-1810 (2003). [CrossRef]
  18. Z. Wang and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms,” Opt. Lett. 29, 1671-1673 (2004). [CrossRef]
  19. P. Guo and A. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857-859 (2004). [CrossRef]
  20. J.-P. Liu and T.-C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250-252(2009). [CrossRef]
  21. T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357-2360 (1997). [CrossRef]
  22. C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng. 41, 2434-2437 (2002). [CrossRef]
  23. M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367-377 (2004). [CrossRef]
  24. E. Garbusi, C. Pruss, and W. Osten, “Single frame interferogram evaluation,” Appl. Opt. 47, 2046-2052 (2008). [CrossRef]
  25. N. Demoli, J. Mestrović, and I. Sović, “Subtraction digital holography,” Appl. Opt. 42, 798-804 (2003). [CrossRef]
  26. G.-L. Chen, C.-Y. Lin, M.-K. Kuo, and C.-C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15, 8851-8856 (2007). [CrossRef]
  27. Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787-1789 (2004). [CrossRef]
  28. J. Weng, J. Zhong, and C. Hu, “Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy,” Opt. Express 16, 21971-21981 (2008). [CrossRef]
  29. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190(2006). [CrossRef]
  30. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000). [CrossRef]
  31. F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006). [CrossRef]
  32. E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59-69(2000). [CrossRef]
  33. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45, 7667-7673 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited