OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

Model reduction using wavelet multiresolution technique applied to fluorescence diffuse optical tomography

Anne Landragin-Frassati, Jean-Marc Dinten, Didier Georges, and Anabela Da Silva  »View Author Affiliations


Applied Optics, Vol. 48, Issue 36, pp. 6878-6892 (2009)
http://dx.doi.org/10.1364/AO.48.006878


View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence diffuse optical tomography is a powerful tool for the investigation of molecular events in studies for new therapeutic developments. Here, the stress is put on the mathematical problem of tomography, which can be formulated in terms of an estimation of physical parameters appearing as a set of partial differential equations and solved by the finite element method. This method is well known to be time consuming, and our principal objective is to reduce the model in order to speed up computation. A method based on a wavelet multiresolution technique is presented in detail. A validation study was conducted on synthetic data and experiments.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(100.7410) Image processing : Wavelets
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 4, 2009
Revised Manuscript: October 30, 2009
Manuscript Accepted: November 3, 2009
Published: December 10, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Anne Landragin-Frassati, Jean-Marc Dinten, Didier Georges, and Anabela Da Silva, "Model reduction using wavelet multiresolution technique applied to fluorescence diffuse optical tomography," Appl. Opt. 48, 6878-6892 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-36-6878


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Desaubies, A. Tarantola, and J. Zinn-Justin, eds., Oceanographic and Geophysical Tomography (North-Holland, 1990).
  2. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123-128 (2003). [CrossRef]
  3. A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008). [CrossRef]
  4. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299(2004). [CrossRef]
  5. R. Roy, A. Godavarty, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media,” IEEE Trans. Med. Imaging 22, 824-836 (2003). [CrossRef]
  6. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560 (1992). [CrossRef]
  7. G. I. Marchuk, V. I. Agoshkov, and V. P. Shutyaev, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems (CRC, 1996).
  8. M. Bathia, W. C. Karl, and A. S. Willsky, “A wavelet-based method for multiscale tomographic reconstruction,” IEEE Trans. Med. Imaging 15, 92-101 (1996). [CrossRef]
  9. F. Rashid-Farrokhi, K. J. R. Liu, C. A. Berenstein, and D. Walnut, “Wavelet-based multiresolution local tomography,” IEEE Trans. Image Process. 10, 1412-1430 (1997). [CrossRef]
  10. A. Bilgot, V. Perrier, and L. Desbat, “Wavelets, local tomography and interventional x-ray imaging,” IEEE, Management International Conference Proceedings M9, 183 (2004).
  11. B. Sahiner and A. E. Yagle, “Image reconstruction from projections under wavelet constraints,” IEEE Trans. Signal Process. 41, 3579-3584(1993). [CrossRef]
  12. S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, “Approximation errors and model reduction with an application in optical diffusion tomography,” Inverse Probl. 22, 175-195 (2006). [CrossRef]
  13. S. K. Nath, R. M. Vasu, and M. Pandit, “Wavelet-based compression and denoising of optical tomography data,” Opt. Commun. 167, 37-46 (1999). [CrossRef]
  14. W. Zhu, Y. Wang, Y. Yao, and R. L. Barbour, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16, 210-217 (1997). [CrossRef]
  15. W. Zhu, Y. Wang, and J. Zhang, “Total least squares reconstruction with wavelets for optical tomography,” J. Opt. Soc. Am. A 15, 2639-2650 (1998). [CrossRef]
  16. B. Kanmani, P. Bansal, and R. M. Vasu, “Computationally efficient optical tomographic reconstruction through waveletizing the normalized quadratic perturbation equation,” Proc. SPIE 6164, 61640R1-10 (2006).
  17. M. N. O. Sadiku, C. M. Akujuobi, and R. C. Garcia, “An introduction to wavelets in electromagnetics,” IEEE Microwave Magazine 6, 63-72 (2005). [CrossRef]
  18. R. L. Wagner and W. C. Chew, “A study of wavelets for the solution of electromagnetic integral equations,” IEEE Trans. Antennas Propag. 43, 802-810 (1995). [CrossRef]
  19. Z. Xiang and Y. Lu, “An effective wavelet matrix transform approach for efficient solutions of electromagnetic integral equations,” IEEE Trans. Antennas Propag. 45, 1205-1213 (1997). [CrossRef]
  20. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893-895 (2001). [CrossRef]
  21. F. Fedele, J. P. Laible, and M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Comput. Phys. 187, 597-619 (2003). [CrossRef]
  22. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727-2741 (1994). [CrossRef]
  23. D. S. Burnett, Finite Element Analysis: From Concepts to Applications (Addison-Wesley, 1987).
  24. M. J. Eppstein, F. Fedele, J. Laible, C. Zhang, A. Godavarty, and E. M. Sevick-Muraca, “A comparison of exact and approximate adjoint sensitivities in fluorescence tomography,” IEEE Trans. Med. Imaging 22, 1215-1223 (2003). [CrossRef]
  25. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12, 5402-5417 (2004). [CrossRef]
  26. Y. Saad and M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comp. 7, 856-869 (1986). [CrossRef]
  27. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1987), Chap. 7.
  28. A. Grossmann and J. Morlet, “Decomposition of hardy functions into square integrable wavelets of constant shape,” SIAM J. Math. Anal. 15, 723-736 (1984). [CrossRef]
  29. S. G. Mallat, “A theory of multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell. 11, 674-693 (1989). [CrossRef]
  30. I. Daubechies, Ten Lectures on Wavelets (SIAM, 1992), pp. 167-213.
  31. http://www.comsol.com/.
  32. X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1-N10(2002). [CrossRef]
  33. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007). [CrossRef]
  34. T. A. Davis and I. S. Duff, “An unsymmetric pattern multifrontal method for sparse LU factorization,” SIAM J. Matrix Anal. Appl. 18, 140-158 (1997). [CrossRef]
  35. L. Grigori, “A framework for efficient sparse LU factorization in a cluster based platform,” in Proceedings of International Workshop on Cluster Computing (Springer-Verlag, 2001).
  36. R. Yuster and U. Zwick, “Fast sparse matrix multiplication,” in Proceedings of the 12th Annual European Symposium on Algorithms (Springer-Verlag, 2004).
  37. P. Lascaux and R. Theodor, Analyse Numérique Matricielle Appliquée à l'Art de l'Ingénieur, 2nd ed. (Masson, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited