OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 2 — Jan. 21, 2010

Speckle noise reduction in optical coherence tomography of paint layers

Michael Hughes, Marika Spring, and Adrian Podoleanu  »View Author Affiliations

Applied Optics, Vol. 49, Issue 1, pp. 99-107 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present and characterize a sequential angular compounding method for reducing speckle contrast in optical coherence tomography images of paint layers. The results are compared with postprocessing methods, and we show that the compounding technique can improve the speckle contrast ratio in B-scans by better than a factor of 2 in exchange for a negligible loss of resolution. As a result, image aesthetics are improved, thin layers become more distinct, and edge-detection algorithms work more efficiently. The effect of varying the angular scan size and number of averages is investigated, and it is found that a degree of statistical correlation between speckle patterns exists, even for relatively large changes in angle of incidence. Angular compounding is also performed on three-dimensional data sets and compared with a method whereby en face slices are averaged over depth.

© 2010 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Imaging Systems

Original Manuscript: September 3, 2009
Revised Manuscript: November 19, 2009
Manuscript Accepted: November 25, 2009
Published: December 21, 2009

Virtual Issues
Vol. 5, Iss. 2 Virtual Journal for Biomedical Optics

Michael Hughes, Marika Spring, and Adrian Podoleanu, "Speckle noise reduction in optical coherence tomography of paint layers," Appl. Opt. 49, 99-107 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  3. H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography--a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133-6144 (2005). [CrossRef] [PubMed]
  4. P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1-11(2006).
  5. D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, and S. Barry, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15, 15972-15986 (2007). [CrossRef] [PubMed]
  6. M. Spring, H. Liang, B. Peric, D. Saunders, and A. Podoleanu, “Optical coherence tomography--a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings,” ICOM Committee For Conservation Newsletter 2008-4, 633-640 (2008).
  7. M. Gora, P. Targowski, A. Rycyk, and J. Marczak, “Varnish ablation control by optical coherence tomography,” Laser Chem. 2006, 1-7 (2006). [CrossRef]
  8. E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009). [CrossRef]
  9. P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006). [CrossRef]
  10. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95 (1999). [CrossRef]
  11. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545-547 (2000). [CrossRef]
  12. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22, 593-596 (2005). [CrossRef]
  13. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005). [CrossRef]
  14. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” in Selected Papers on Interferometry (SPIE, 1991), Vol. MS-28, pp. 427-429.
  15. T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett. 31, 190-192 (2006). [CrossRef] [PubMed]
  16. M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565 (2003). [CrossRef] [PubMed]
  17. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express 15, 6200-6209 (2007). [CrossRef] [PubMed]
  18. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express 14, 4736-4745(2006). [CrossRef] [PubMed]
  19. J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641-656 (2002). [CrossRef] [PubMed]
  20. J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10, 064034 (2005). [CrossRef]
  21. B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207-212 (2005). [CrossRef] [PubMed]
  22. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427-1440 (1997). [CrossRef] [PubMed]
  23. H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14, 030512 (2009). [CrossRef] [PubMed]
  24. R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51, 3231-3240(2006). [CrossRef] [PubMed]
  25. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]
  26. P. Thevenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27-41 (1998). [CrossRef]
  27. H. Liang, B. Peric, M. Spring, D. Saunders, M. Hughes, and A. Podoleanu, “Non-invasive imaging of subsurface paint layers with optical coherence tomography,” presented at Conservation Science 2007, Milan, Italy, 10-11 May 2007.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited