OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Generalized model for incoherent detection in confocal optical microscopy

Rachid Hammoum, Sidi Ould Saad Hamady, and Marc D. Fontana  »View Author Affiliations

Applied Optics, Vol. 49, Issue 16, pp. D96-D105 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a generalized model in order to calculate the point spread functions in both the focal and the detection planes for the electric field strengths. In these calculations, based on the generalized Jones matrices, we introduce all of the interdependent parameters that could influence the spatial resolution of a confocal optical microscope. Our proposed model is more nearly complete, since we make no ap proximations of the scattered electric fields. These results can be successfully applied to standard confocal optical techniques to get a better understanding for more quantitative interpretations of the probe.

© 2010 Optical Society of America

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(180.1790) Microscopy : Confocal microscopy
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: December 9, 2009
Revised Manuscript: February 21, 2010
Manuscript Accepted: March 3, 2010
Published: March 23, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Rachid Hammoum, Sidi Ould Saad Hamady, and Marc D. Fontana, "Generalized model for incoherent detection in confocal optical microscopy," Appl. Opt. 49, D96-D105 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Wilson and B. R. Masters, “Confocal microscopy,” Appl. Opt. 33, 565-566 (1994). [CrossRef] [PubMed]
  2. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427-471 (1996). [CrossRef]
  3. J.B.Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 2006). [CrossRef]
  4. Y. Komachi, T. Katagiri, H. Sato, and H. Tashiro, “Improvement and analysis of a micro Raman probe,” Appl. Opt. 48, 1683-1696 (2009). [CrossRef] [PubMed]
  5. A. S. Van De Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69, 2323-2363 (2006). [CrossRef]
  6. R. Hammoum, M. D. Fontana, P. Bourson, and V. Ya. Shur, “Characterization of PPLN-microstructures by means of Raman spectroscopy,” Appl. Phys. A 91, 65-67 (2008). [CrossRef]
  7. P. D. Higdon, P. Török, and T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes,” J. Microsc. 193, 127-141 (1999). [CrossRef]
  8. P. Török, “Propagation of electromagnetic dipole waves through dielectric interfaces,” Opt. Lett. 25, 1463-1465(2000). [CrossRef]
  9. O. Haeberlé, M. Ammar, H. Furukawa, K. Tenjimbayashi, and P. Török, “Point spread function of optical microscopes imaging through stratified media,” Opt. Express 11, 2964-2969 (2003). [CrossRef] [PubMed]
  10. O. Haeberlé, “Focussing of light through a stratified medium: a practical approach for computing microscope point spread function. Part I: Conventional microscopy,” Opt. Commun. 216, 55-63 (2003). [CrossRef]
  11. O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part II: confocal and multiphoton microscopy,” Opt. Commun. 235, 1-10 (2004). [CrossRef] [PubMed]
  12. P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507-523 (2008). [CrossRef] [PubMed]
  13. C. Sourisseau and P. Maraval, “Confocal Raman microspectrometry: a vectorial electromagnetic treatment of the light focused and collected through a planar inteface and its application to the study of a thin coating,” Appl. Spectrosc. 57, 1324-1332 (2003). [CrossRef]
  14. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B 4, 337-350(1987). [CrossRef]
  15. H. F. Arnoldus and J. T. Foley, “Transmission of dipole radiation through interfaces and the phenomenon of anti-critical angles,” J. Opt. Soc. Am. A 21, 1109-1117 (2004). [CrossRef]
  16. H. Guo, J. Chen, and S. Zhuang, “Resolution of aplanatic systems with various semiapertures, viewed from the two sides of the diffracting aperture,” J. Opt. Soc. Am. A 23, 2756-2763 (2006). [CrossRef]
  17. H. Guo, S. Zhuang, J. Chen, and Z. Liang, “Multilayered optical memory with bits stored as refractive index change. I. Electromagnetic theory,” J. Opt. Soc. Am. A 24, 1776-1785(2007). [CrossRef]
  18. H. Guo, S. Zhuang, S. Guo, J. Chen, and Z. Liang, “Multilayered optical memory with bits stored as refractive index change. II. Numerical results of a waveguide multilayered optical memory,” J. Opt. Soc. Am. A 25, 1799-1809 (2008). [CrossRef] [PubMed]
  19. H. Guo, S. Zhuang, J. Chen, and Z. Liang, “Imaging theory of an aplanatic system with stratified medium based on the method for a vector coherent transfer function,” Opt. Lett. 31, 2978-2980 (2006). [CrossRef] [PubMed]
  20. W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission spectroscopy,” Opt. Express 15, 4634-4646(2007). [CrossRef] [PubMed]
  21. P. Török and P. Varga, “Electromagnetic diffraction of light focussed through a stratified medium,” Appl. Opt. 36, 2305-2312 (1997). [CrossRef]
  22. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325-332 (1995).
  23. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999). [CrossRef]
  24. P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148, 300-315 (1998). [CrossRef]
  25. P. Török and T. Wilson, “Rigorous theory for axial resolution in confocal microscopes,” Opt. Commun. 137, 127-135(1997). [CrossRef]
  26. P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45, 1681-1698 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited