OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Image reconstruction using a photonic crystal based flat lens operating at 1.55 μm

Maxence Hofman, Didier Lippens, and Olivier Vanbésien  »View Author Affiliations


Applied Optics, Vol. 49, Issue 30, pp. 5806-5813 (2010)
http://dx.doi.org/10.1364/AO.49.005806


View Full Text Article

Enhanced HTML    Acrobat PDF (774 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We used an optimized photonic crystal based flat lens for target detection and image reconstruction of micrometer sized objects for an operating wavelength of 1.55 μm . Using numerical retrieval procedures inspired from tomography, the ability to detect subwavelength sized targets and to image metallic objects of complex shapes is shown. The relation between the reconstructed image quality and lens resolution is investigated.

© 2010 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(170.6960) Medical optics and biotechnology : Tomography
(220.2740) Optical design and fabrication : Geometric optical design
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: June 23, 2010
Revised Manuscript: September 1, 2010
Manuscript Accepted: September 25, 2010
Published: October 15, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Maxence Hofman, Didier Lippens, and Olivier Vanbésien, "Image reconstruction using a photonic crystal based flat lens operating at 1.55μm," Appl. Opt. 49, 5806-5813 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-30-5806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative of ε and μ,” Sov. Phys. - Usp. 10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  3. N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005). [CrossRef]
  4. K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007). [CrossRef]
  5. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006). [CrossRef] [PubMed]
  6. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  7. E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006). [CrossRef]
  8. T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31, 2786–2788 (2006). [CrossRef] [PubMed]
  9. Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Muralowski, and D. W. Prather, “Negative refraction imaging in a hybrid photonic crystal device at near-infrared frequencies,” Opt. Express 15, 1286–1291 (2007). [CrossRef] [PubMed]
  10. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005). [CrossRef]
  11. N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008). [CrossRef]
  12. M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010). [CrossRef]
  13. C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008). [CrossRef]
  14. N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008). [CrossRef] [PubMed]
  15. B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009). [CrossRef] [PubMed]
  16. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010). [CrossRef]
  17. D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000). [CrossRef] [PubMed]
  18. Y. Ben-Aryeh, “Nonclassical high resolution effects produced by evanescent waves,” J. Opt. B Quant. Semiclass. Opt. 5, S553–S556 (2003). [CrossRef]
  19. J. B. Pendry and S. Anantha Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002). [CrossRef]
  20. J. B. Pendry and S. Anantha Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003). [CrossRef]
  21. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002). [CrossRef] [PubMed]
  22. D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?” J. Opt. Soc. Am. A 21, 122–131 (2004). [CrossRef]
  23. A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” Solid State Phenom. 121–123, 1065–1068 (2007). [CrossRef]
  24. G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007). [CrossRef] [PubMed]
  25. G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007). [CrossRef]
  26. G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010). [CrossRef]
  27. J. Pearce, H. Choi, D. L. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30, 1653–1655 (2005). [CrossRef] [PubMed]
  28. N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006). [CrossRef]
  29. W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection coatings for a photonic crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009). [CrossRef] [PubMed]
  30. X. Pan, Proceedings of the 41st Annual Meeting of the American Association of Physicists in Medicine, www.aapm.org/meetings/99AM/pdf/2806-57576.pdf (1999).
  31. G. Thomas and V. K. Govindan, “Computationally efficient filtered back-projection algorithm for tomographic image reconstruction using Walsh transform,” J. Vis. Commun. Image Rep. 17, 581–588 (2006). [CrossRef]
  32. G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, 2nd ed. (Academic, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited