OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Spherical aberration gauge for human vision

Bruce M. Pixton and John E. Greivenkamp  »View Author Affiliations

Applied Optics, Vol. 49, Issue 30, pp. 5906-5913 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spherical aberration affects vision in varying degrees depending on pupil size, accommodation, individual eye characteristics, and interpretations by the brain. We developed a spherical aberration gauge to help evaluate the correction potential of spherical aberration in human vision. Variable aberration levels are achieved with laterally shifted polynomial plates from which a user selects a setting that provides the best vision. The aberration is mapped into the pupil of the eye using a simple telescope. Calibration data are given.

© 2010 Optical Society of America

OCIS Codes
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.4595) Vision, color, and visual optics : Optical effects on vision
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: April 26, 2010
Revised Manuscript: August 16, 2010
Manuscript Accepted: September 10, 2010
Published: October 19, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Bruce M. Pixton and John E. Greivenkamp, "Spherical aberration gauge for human vision," Appl. Opt. 49, 5906-5913 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963). [PubMed]
  2. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  3. N. Chateau, A. Blanchard, and D. Baude, “Influence of myopia and aging on the optimal spherical aberration of soft contact lenses,” J. Opt. Soc. Am. A 15, 2589–2596 (1998). [CrossRef]
  4. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004). [CrossRef]
  5. V. A. D. P. Sicam, M. Dubbelman, and R. G. L. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A 23, 544–549 (2006). [CrossRef]
  6. M. Koomen, R. Tousey, and R. Scolnik, “The spherical aberration of the eye,” J. Opt. Soc. Am. 39, 370–376 (1949). [CrossRef] [PubMed]
  7. W. N. Charman, J. A. M. Jennings, and H. Whitefoot, “The refraction of the eye in relation to spherical aberration and pupil size,” Br. J. Physiol. Opt. 32, 78–93 (1978). [PubMed]
  8. D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vis. Res. 35, 313–323(1995). [CrossRef] [PubMed]
  9. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  10. R. Navarro, E. Moreno-Barriuso, S. Bará, and T. Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000). [CrossRef]
  11. A. Y. Yi and T. W. Raasch, “Design and fabrication of a freeform phase plate for high-order ocular aberration correction,” Appl. Opt. 44, 6869–6876 (2005). [CrossRef] [PubMed]
  12. J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15, 15287–15292 (2007). [CrossRef] [PubMed]
  13. R. Held, “The rediscovery of adaptability in the visual system: effects of extrinsic and intrinsic chromatic dispersion,” in Visual Coding and Adaptability, C.S.Harris, ed., (Lawrence Erlbaum, 1980), pp. 69–94.
  14. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004). [CrossRef] [PubMed]
  15. F. J. Rucker and P. B. Kruger, “The role of short-wavelength sensitive cones and chromatic aberration in the response to stationary and step accommodation stimuli,” Vis. Res. 44, 197–208 (2004). [CrossRef]
  16. J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35, 1229–1233 (2009). [CrossRef] [PubMed]
  17. H. H. Dietze and M. J. Cox, “Correcting ocular spherical aberration with soft contact lenses,” J. Opt. Soc. Am. A 21, 473–485(2004). [CrossRef]
  18. P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601–4610 (2004). [CrossRef] [PubMed]
  19. R. A. Buchroeder and R. B. Hooker, “Aberration generator,” Appl. Opt. 14, 2476–2479 (1975). [CrossRef] [PubMed]
  20. M. T. Chang and J. M. Sasián, “Variable spherical aberration generators,” Proc. SPIE 3129, 217–228 (1997). [CrossRef]
  21. N. López-Gil, H. C. Howland, B. Howland, N. Charman, and R. Applegate, “Generation of third-order spherical and coma aberrations by use of radially symmetrical fourth-order lenses,” J. Opt. Soc. Am. A 15, 2563–2571 (1998). [CrossRef]
  22. A. Palusinski, J. M. Sasián, and J. E. Greivenkamp, “Lateral-shift variable aberration generators,” Appl. Opt. 38, pp. 86–90(1999). [CrossRef]
  23. B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004). [CrossRef] [PubMed]
  24. E. Acosta and S. Bará, “Variable aberration generators using rotated Zernike plates,” J. Opt. Soc. Am. A 22, 1993–1996(2005). [CrossRef]
  25. G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006). [CrossRef] [PubMed]
  26. S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007). [CrossRef]
  27. L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent 3,305,294 (21 February 1967).
  28. J. Schwiegerling, Department of Ophthalmology and College of Optical Sciences, University of Arizona, 655 N. Alvernon Way, Tucson, Arizona 85711 (personal communication, 2008).
  29. See, for example, VU University Medical Centre, Amsterdam, The Netherlands, “U-specs 2009, Universal Spectacles,” http://www.u-specs.nl/.
  30. F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998). [CrossRef]
  31. S. Bará and R. Navarro, “Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs,” J. Opt. Soc. Am. A 20, 1–10 (2003). [CrossRef]
  32. K. Seong, “Optical metrology for transmission interferometric testing,” Ph.D. dissertation (University of Arizona, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited