OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Modeling the local excitation fluence rate and fluorescence emission in absorbing and strongly scattering multilayered media

Dmitry Yudovsky and Laurent Pilon  »View Author Affiliations


Applied Optics, Vol. 49, Issue 31, pp. 6072-6084 (2010)
http://dx.doi.org/10.1364/AO.49.006072


View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present computationally efficient and accurate semiempirical models of light transfer for real-time analysis of multilayer fluorescing media exposed to normally incident excitation light. The model accounts for absorption and strong forward scattering as well as for internal reflection at the interface between the medium and the surrounding air. The absorption and scattering coefficients are assumed to be constant with depth; the fluorophore concentration is considered piecewise constant. The refractive index ranges from 1.0 to 2.0, and the transport single scattering albedo between 0.50 and 0.99. First, simple analytical expressions for local excitation fluence rate within the medium and surface fluorescence intensity emerging from its surface were derived from the two-flux approximation. Then, parameters appearing in the analytical expression previously derived were fitted to match results from more accurate Monte Carlo simulations. A single semiempirical parameter was sufficient to relate the diffuse reflectance of the medium at the excitation wavelength to the local excitation fluence rate within the medium and to the surface fluorescence emission intensity. The model predictions were compared with Monte Carlo simulations for local fluence rate and total surface fluorescence emission from (i) homogeneous semi-infinite fluorescing media, (ii) media with a semi-infinite fluorescing layer beneath a nonfluorescing layer, and (iii) media with a finite fluorescing layer embedded in a nonfluorescing semi-infinite layer. The model predictions of the local excitation fluence rate and of the total surface fluorescence emission fell to within 5% of predictions by Monte Carlo simulations for single scattering albedo greater than 0.90. The current model can be used for a wide range of applications, including noninvasive diagnosis of biological tissue.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(110.7050) Imaging systems : Turbid media
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(230.4170) Optical devices : Multilayers
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 2, 2010
Revised Manuscript: July 2, 2010
Manuscript Accepted: August 22, 2010
Published: October 26, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Dmitry Yudovsky and Laurent Pilon, "Modeling the local excitation fluence rate and fluorescence emission in absorbing and strongly scattering multilayered media," Appl. Opt. 49, 6072-6084 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-31-6072

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited