OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Single-shot, dual-wavelength digital holography based on polarizing separation

D. G. Abdelsalam, Robert Magnusson, and Daesuk Kim  »View Author Affiliations


Applied Optics, Vol. 50, Issue 19, pp. 3360-3368 (2011)
http://dx.doi.org/10.1364/AO.50.003360


View Full Text Article

Enhanced HTML    Acrobat PDF (1219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe what we believe to be a new digital holographic configuration that can be utilized for both single-shot, dual-wavelength, off-axis geometry and imaging polarimetry. To get the feasibility of the single-shot, dual-wavelength, off-axis geometry, a sample with a nominal step height of 1.34 μm is used. Undesirable noises that strongly affect the measurement have been suppressed successfully by using a modified flat fielding method for the dual-wavelength scheme. And also, the experiment is conducted on a nanopattern sample on the basis of a single image acquisition to show the imaging polarimetry capability. The proposed scheme can provide a real-time solution for measuring three-dimensional objects having a high abrupt height difference with moderate accuracy. Furthermore, it can be used as a fast polarization imaging measurement tool.

© 2011 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Holography

History
Original Manuscript: February 22, 2011
Revised Manuscript: April 26, 2011
Manuscript Accepted: May 2, 2011
Published: July 1, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
D. G. Abdelsalam, Robert Magnusson, and Daesuk Kim, "Single-shot, dual-wavelength digital holography based on polarizing separation," Appl. Opt. 50, 3360-3368 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-19-3360


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980), pp. 459–490.
  2. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy witha single hologram acquisition,” Opt. Express 15, 7231–42 (2007). [CrossRef] [PubMed]
  3. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1988), Vol. XXVI, pp. 349–393. [CrossRef]
  4. U. Paul Kumar, B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Two wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009). [CrossRef]
  5. K. Creath, Y.-Y. Cheng, and J. C. Wyant, “Contouring aspheric surfaces using two-wavelength phase-shifting interferometry,” Opt. Acta 32, 1455–1464 (1985). [CrossRef]
  6. Y. Y. Cheng and J. C. Wyant, “Two wavelength phase shifting interferometry,” Appl. Opt. 23, 4539–4543 (1984). [CrossRef] [PubMed]
  7. K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26, 2810–2816(1987). [CrossRef] [PubMed]
  8. J. Schmit and P. Hariharan, “Two-wavelength interferometry profilometry with a phase- step error-compensating algorithm,” Opt. Eng. 45, 115602 (2006). [CrossRef]
  9. M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004). [CrossRef]
  10. S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387(2002). [CrossRef]
  11. Y. Y. Cheng and J. C. Wyant, “Multiple-wave length phase-shifting interferometry,” Appl. Opt. 24, 804–807 (1985). [CrossRef] [PubMed]
  12. D. Kim, J. W. You, and S. Kim, “White light on-axis digitalholographic microscopy based on spectral phase shifting,” Opt. Express 14, 229–234 (2006). [CrossRef] [PubMed]
  13. J.-W. You, S. Kim, and D. Kim, “High speed volumetric thickness profile measurement based on full-field wavelength scanning interferometer,” Opt. Express 16, 21022–21031 (2008). [CrossRef] [PubMed]
  14. P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferogramsin the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995). [CrossRef]
  15. H. Fan, I. Reading, and Z. P. Fang, “Research on tilted coherent plane white-light interferometry for wafer bump 3D inspection,” SIMTech. Rep. 7 (SIMTech, 2006), pp.59–63.
  16. P. de Groot and L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18, 1462–1464(1993). [CrossRef] [PubMed]
  17. P. de Groot, “Surface profiling by frequency-domain analysis of white light interferograms,” Proc. SPIE 2248, 101–104(1994). [CrossRef]
  18. J. W. Goodman and R. W. Lawrence, “Digital image formation from electrically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  19. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef] [PubMed]
  20. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  21. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999). [CrossRef]
  22. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phasecontrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  23. D. G. Abdelsalam, B. J. Baek, Y. J. Cho, and D. Kim, “Surface form measurement using single-shot off-axis Fizeau interferometer,” J. Opt. Soc. Korea 14, 409–414 (2010). [CrossRef]
  24. E. Leith and J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965). [CrossRef]
  25. T. Hansel, R. Grunwald, K. Reimann, J. Bonitz, C. Kaufmann, and U. Griebner, “Deformation measurements of high-speed MEMS with combined two-wavelength single-pulse digital holography and single phase reconstruction using subpicosecond pulses,” IEEE J. Quantum Electron. 15, 1351–1358 (2009). [CrossRef]
  26. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002). [CrossRef] [PubMed]
  27. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twinimage elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  28. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis Foroptical Testing (Taylor and Francis, 2005), pp. 384–385.
  29. S. B. Howell, Handbook of CCD Astronomy (Cambridge University, 2006).
  30. D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes atreflection,” Opt. Lasers Eng. 48, 543–547 (2010). [CrossRef]
  31. D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvaturemeasurement of spherical smooth surfaces by multiple-beam interferometry inreflection,” Opt. Lasers Eng. 48, 643–649 (2010). [CrossRef]
  32. V. V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, and C. Kim, “Hetrodyne polarimetry for mapping defects inlithography masks,” Opt. Commun. 281, 2355–2366 (2008). [CrossRef]
  33. X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001). [CrossRef]
  34. M. G. Moharam, E. Grann, D. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary grating,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  35. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave anlysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12, 1077–1086 (1995). [CrossRef]
  36. Guide to the Expression of Uncertainty in Measurement, (International Organization for Standardization, 1995).
  37. E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodizationusing cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69(2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited