OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Remote nocturnal bird classification by spectroscopy in extended wavelength ranges

Patrik Lundin, Per Samuelsson, Sune Svanberg, Anna Runemark, Susanne Åkesson, and Mikkel Brydegaard  »View Author Affiliations


Applied Optics, Vol. 50, Issue 20, pp. 3396-3411 (2011)
http://dx.doi.org/10.1364/AO.50.003396


View Full Text Article

Enhanced HTML    Acrobat PDF (1307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present optical methods at a wide range of wavelengths for remote classification of birds. The proposed methods include eye-safe fluorescence and depolarization lidar techniques, passive scattering spectroscopy, and infrared (IR) spectroscopy. In this paper we refine our previously presented method of remotely classifying birds with the help of laser-induced β-keratin fluorescence. Phenomena of excitation quenching are studied in the laboratory and are theoretically discussed in detail. It is shown how the ordered microstructures in bird feathers induce structural “colors” in the IR region with wavelengths of around 3 6 μm . We show that transmittance in this region depends on the angle of incidence of the transmitted light in a species-specific way and that the transmittance exhibits a close correlation to the spatial periodicity in the arrangement of the feather barbules. We present a method by which the microstructure of feathers can be monitored in a remote fashion by utilization of thermal radiation and the wing beating of the bird.

© 2011 Optical Society of America

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(280.3640) Remote sensing and sensors : Lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6340) Spectroscopy : Spectroscopy, infrared
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: January 4, 2011
Revised Manuscript: May 13, 2011
Manuscript Accepted: May 18, 2011
Published: July 1, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Patrik Lundin, Per Samuelsson, Sune Svanberg, Anna Runemark, Susanne Åkesson, and Mikkel Brydegaard, "Remote nocturnal bird classification by spectroscopy in extended wavelength ranges," Appl. Opt. 50, 3396-3411 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-20-3396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Åkesson and A. Hedenström, “How migrants get there: migratory performance and orientation,” BioScience 57, 123–133 (2007). [CrossRef]
  2. T. Alerstam and Å. Lindström, “Optimal bird migration: the relative importance of time, energy and safety,” in Bird Migration: Physiology and Ecophysiology, E.Gewinner, ed. (Springer-Verlag, 1990), pp. 331–351.
  3. T. Alerstam, A. Hedenström, and S. Åkesson, “Long-distance migration: evolution and determinants,” Oikos 103, 247–260(2003). [CrossRef]
  4. B. Bruderer and F. Liechti, “Intensität, Höhe und Richtung von Tag- und Nachtzug im Herbst über Südwestdeutschland,” Ornithol. Beob. 95, 113–128 (1998).
  5. S. Zehnder, S. Åkesson, F. Liechti, and B. Bruderer, “Nocturnal autumn bird migration at Falsterbo, south Sweden,” J. Avian Biol. 32, 239–248 (2001). [CrossRef]
  6. P. Kerlinger and F. R. Moore, Atmospheric Structure and Avian Migration (Plenum, 1989).
  7. Å. Lindström, “The role of predation risk in stopover habitat selection in migrating bramblings, Fringilla montifringilla,” Behav. Ecol. 1, 24–35 (1990). [CrossRef]
  8. P. Henningsson, G. Spedding, and A. Hedenstrom, “Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel,” J. Exp. Biol. 211, 717–730 (2008). [CrossRef] [PubMed]
  9. I. Newton, The Migration Ecology of Birds (Academic, 2008).
  10. D. W. H. Adams, “Radar observations of bird migration in Cyprus,” Ibis 104, 133–146 (1962). [CrossRef]
  11. T. Alerstam, “Nocturnal migration of thrushes (Turdus spp.) in southern Sweden,” Oikos 27, 457–475 (1976). [CrossRef]
  12. T. Alerstam, J. Bäckman, G. A. Gudmundsson, A. Hedenström, S. S. Henningsson, H. Karlsson, M. Rosén, and R. Strandberg, “A polar system of intercontinental bird migration,” Proc. R. Soc. B 274, 2523–2530 (2007). [CrossRef] [PubMed]
  13. M. B. Casement, “Migration across the Mediterranean observed by radar,” Ibis 108, 461–491 (1966). [CrossRef]
  14. J. L. F. Parslow, “The migration of passerine night migrants across the English Channel studied by radar,” Ibis 111, 48–79(1969). [CrossRef]
  15. B. Bruderer and F. Liechti, “Quantification of bird migration—different means compared,” in Proceedings of the Bird Strike Committee, Europe, Vol.  22 (Bird Strike Committee Europe, 1994), pp. 243–254.
  16. S. Åkesson, “Coastal migration and wind drift compensation in nocturnal passerine migrants,” Ornis Scand. 24, 87–94(1993). [CrossRef]
  17. S. A. Gauthreaux, Jr., “A portable ceilometer technique for studying low level nocturnal migration,” Bird Banding 40, 309–320 (1969). [CrossRef]
  18. F. Liechti, “Calibrating the moon-watching method—changes and limits,” Avian Ecol. Beh. 7, 27–41 (2001).
  19. F. Liechti, D. Peter, R. Lardelli, and B. Bruderer, “Herbstlicher Vogelzug im Alpenraum nach Mond-beobachtungen—Topographie un Wind beeinflussen den Zugverlauf,” Ornithol. Beob. 93, 131–152 (1996).
  20. S. A. Gauthreaux and J. W. Livingston, “Monitoring bird migration with a fixed-beam radar and a thermal-imaging camera,” J. Field Ornithol. 77, 319–328 (2006). [CrossRef]
  21. F. Liechti, B. Bruderer, and H. Paproth, “Quantification of nocturnal bird migration by moonwatching: comparison with radar and infrared observations,” J. Field Ornithol. 66, 457–468 (1995).
  22. A. Farnsworth, S. A. Gauthreaux, Jr., and D. van Blaricom, “A comparison of nocturnal call counts of migrating birds and reflectivity measurements on Doppler radar,” J. Avian Biol. 35, 365–369 (2004). [CrossRef]
  23. A. Farnsworth and I. J. Lovette, “Evolution of nocturnal flight calls in migrating wood-warblers: apparent lack of morphological constraints,” J. Avian Biol. 36, 337–347 (2005). [CrossRef]
  24. B. J. Stutchbury, S. A. Tarof, T. Done, E. Gow, P. M. Kramer, J. Tautin, J. W. Fox, and V. Afanasyev, “Tracking long-distance songbird migration by using geolocators,” Science 323, 896–896 (2009). [CrossRef] [PubMed]
  25. J. Meade, D. Biro, and T. Guilford, “Homing pigeons develop local route stereotypy,” Proc. R. Soc. B 272, 17–23 (2005). [CrossRef] [PubMed]
  26. T. Alerstam, M. Rosén, J. Bäckman, P. G. Ericson, and O. Hellgren, “Flight speeds among bird species: allometric and phylogenetic effects,” PLos Biol. 5, 1656–1662 (2007). [CrossRef]
  27. J. Bäckman and T. Alerstam, “Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus,” Proc. R. Soc. B 268, 1081–1087 (2001). [CrossRef] [PubMed]
  28. B. Bruderer and E. Weitnauer, “Radarbeobachtungen über Zug und Nachtflüge des Mauerseglers (Apus Apus),” Rev. Suisse Zool. 79, 1190–1200 (1972). [PubMed]
  29. G. E. Hill and K. J. McGraw, Bird Coloration, Mechanisms and Measurements, Vol.  1 (Harvard University Press, 2006).
  30. H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mat. 22, 2871–288 (2010). [CrossRef]
  31. M. Brydegaard, P. Lundin, Z. G. Guan, A. Runemark, S. Åkesson, and S. Svanberg, “Feasibility study: fluorescence lidar for remote bird classification,” Appl. Opt. 49, 4531–4544(2010). [CrossRef] [PubMed]
  32. M.A.Mycek and B.W.Pogue, eds., Handbook of Biomedical Fluorescence (CRC Press, 2003).
  33. N. Takeuchi, “Elastic lidar measurement of the troposphere,” in Laser Remote Sensing, T.Fujii and T.Fukuchi, eds. (CRC Press, 2005), pp. 63–122. [CrossRef]
  34. C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. part VI: optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987). [CrossRef]
  35. R. G. Strauch, V. E. Derr, and R. E. Cupp, “Atmospheric temperature measurement using Raman backscatter,” Appl. Opt. 10, 2665–2669 (1971). [CrossRef] [PubMed]
  36. G. Benedetti-Michelangeli, F. Gongeduti, and G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972). [CrossRef]
  37. R. Grönlund, M. Sjöholm, P. Weibring, H. Edner, and S. Svanberg, “Elemental mercury emissions from chlor-alkali plants measured by lidar techniques,” Atmos. Environ. 39, 7474–7480 (2005). [CrossRef]
  38. N. Menyuk, D. K. Killinger, and W. E. DeFeo, “Remote sensing of NO using a differential lidar,” Appl. Opt. 19, 3282–3286(1980). [CrossRef] [PubMed]
  39. Z. G. Guan, P. Lundin, L. Mei, G. Somesfalean, and S. Svanberg, “Vertical lidar sounding of atomic mercury and nitric oxide in a major Chinese city,” Appl. Phys. B 101, 465–470 (2010). [CrossRef]
  40. J. Gelbwachs and M. Birnbaum, “Fluorescence of atmospheric aerosols and lidar implications,” Appl. Opt. 12, 2442–2447(1973). [CrossRef] [PubMed]
  41. P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120(2001). [CrossRef]
  42. A. Ounis, Z. G. Cerovic, J. M. Briantais, and I. Moya, “DE-FLIDAR: a new remote sensing instrument for estimation of epidermal UV absorption in leaves and canopies,” in Proceedings of the European Association of Remote Sensing Laboratories (EARSeL)-SIGWorkshop LIDAR, Vol.  1 (EARSeL, 2000), pp. 196–204.
  43. S. Svanberg, “LIDAR,” in Springer Handbook of Lasers and Optics, F.Träger, ed. (Springer-Verlag, 2007), pp. 1031–1052.
  44. T.Fujii and T.Fukuchi, eds., Laser Remote Sensing (CRC Press, 2005).
  45. R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Whittingham, I. J. Davenport, and P. E. Bellamy, “Modelling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005). [CrossRef]
  46. R. Clawges, K. Vierling, L. Vierling, and E. Rowell, “The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest,” Remote Sens. Environ. 112, 2064–2073 (2008). [CrossRef]
  47. N. E. Seavy, J. H. Viers, and J. K. Wood, “Riparian bird response to vegetation structure: a multiscale analysis using lidar measurements of canopy height,” Ecol. Appl. 19, 1848–1857 (2009). [CrossRef] [PubMed]
  48. P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile lidar system for environmental monitoring,” Appl. Opt. 42, 3583–3594 (2003). [CrossRef] [PubMed]
  49. R. O. Prum, “Anatomy, physics and evolution of structural colors,” in Bird Coloration, Mechanisms and Measurements, G.E.Hill and K.J.McGraw, eds., Vol.  1 (Harvard University Press, 2006), pp. 295–354.
  50. M. Srinivasarau, “Nano-optics in the biological world,” Chem. Rev. 99, 1935–1961 (1999). [CrossRef]
  51. C. Giacovazzo, H. L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti, and M. Catti, Fundamentals of Crystallography (Oxford University Press, 2002). [PubMed]
  52. N. S. Hart, J. C. Partridge, and I. C. Cuthill, “Visual pigments, cone oil droplets and cone photoreceptor distribution in the European starling (Sturnus vulgaris),” J. Exp. Biol. 201, 1433–1446 (1998). [PubMed]
  53. Z. G. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, A. Runemark, E. I. Svensson, and S. Svanberg, “Insect monitoring with fluorescence lidar techniques: field experiments,” Appl. Opt. 49, 5133–5142 (2010). [CrossRef] [PubMed]
  54. C.V. Raman, “The theory of the Christiansen experiment,” Proc. Indian Acad. Sci. A29, 381–390 (1949).
  55. G. B. Benedek, “Theory of transparency of the eye,” Appl. Opt. 10, 459–473 (1971). [CrossRef] [PubMed]
  56. R. O. Prum and R. H. Torres, “A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures,” Integr. Comp. Biol. 43, 591–602 (2003). [CrossRef] [PubMed]
  57. S. Svanberg, Atomic and Molecular Spectroscopy—Basic Aspects and Practical Applications, 4th ed. (Springer-Verlag, 2004).
  58. U. Rascher, B. Gioli, and F. Miglietta, “FLEX—fluorescence explorer: a remote sensing approach to quantify spatio-temporal variations of photosynthetic efficiency from space,” Photosynth. Res. 91, 293–294 (2007). [CrossRef]
  59. S. Hunt, A. T. Bennett, I. C. Cuthill, and R. Griffiths, “Blue tits are ultraviolet tits,” Proc. R. Soc. Lond. B 265, 451–455 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited