OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Depth resolution and multiexponential lifetime analyses of reflectance-based time-domain fluorescence data

Kenneth M. Tichauer, Mark Migueis, Frederic Leblond, Jonathan T. Elliott, Mamadou Diop, Keith St. Lawrence, and Ting-Yim Lee  »View Author Affiliations

Applied Optics, Vol. 50, Issue 21, pp. 3962-3972 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-domain fluorescence imaging is a powerful new technique that adds a rich amount of information to conventional fluorescence imaging. Specifically, time-domain fluorescence can be used to remove autofluorescence from signals, resolve multiple fluorophore concentrations, provide information about tissue microenvironments, and, for reflectance-based imaging systems, resolve inclusion depth. The present study provides the theory behind an improved method of analyzing reflectance-based time-domain data that is capable of accurately recovering mixed concentration ratios of multiple fluorescent agents while also recovering the depth of the inclusion. The utility of the approach was demonstrated in a number of simulations and in tissuelike phantom experiments using a short source–detector separation system. The major findings of this study were (1) both depth of an inclusion and accurate ratios of two-fluorophore concentrations can be recovered accurately up to depths of approximately 1 cm with only the optical properties of the medium as prior knowledge, (2) resolving the depth and accounting for the dispersion effects on fluorescent lifetimes is crucial to the accuracy of recovered ratios, and (3) ratios of three-fluorophore concentrations can be resolved at depth but only if the lifetimes of the three fluorophores are used as prior knowledge. By accurately resolving the concentration ratios of two to three fluorophores, it may be possible to remove autofluorescence or carry out quantitative techniques, such as reference tracer kinetic modeling or ratiometric approaches, to determine receptor binding or microenvironment parameters in point-based time-domain fluorescence applications.

© 2011 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 20, 2010
Revised Manuscript: March 28, 2011
Manuscript Accepted: May 26, 2011
Published: July 14, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Kenneth M. Tichauer, Mark Migueis, Frederic Leblond, Jonathan T. Elliott, Mamadou Diop, Keith St. Lawrence, and Ting-Yim Lee, "Depth resolution and multiexponential lifetime analyses of reflectance-based time-domain fluorescence data," Appl. Opt. 50, 3962-3972 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005). [CrossRef] [PubMed]
  2. F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010). [CrossRef]
  3. R. S. DaCosta, B. C. Wilson, and N. E. Marcon, “Fluorescence and spectral imaging,” Scientific World J. 7, 2046–2071 (2007). [CrossRef]
  4. S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation,” Mol. Imaging 9, 237–255 (2010). [PubMed]
  5. J. Rao, A. Dragulescu-Andrasi, and H. Yao, “Fluorescence imaging in vivo: recent advances,” Curr. Opin. Biotechnol. 18, 17–25 (2007). [CrossRef] [PubMed]
  6. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, “Three-dimensional fluorescence lifetime tomography,” Med. Phys. 32, 992–1000 (2005). [CrossRef] [PubMed]
  7. D. Hall, G. Ma, F. Lesage, and Y. Wang, “Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium,” Opt. Lett. 29, 2258–2260 (2004). [CrossRef] [PubMed]
  8. A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006). [CrossRef] [PubMed]
  9. S. Lam, F. Lesage, and X. Intes, “Time domain fluorescent diffuse optical tomography: analytical expressions,” Opt. Express 13, 2263–2275 (2005). [CrossRef] [PubMed]
  10. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009). [CrossRef] [PubMed]
  11. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. Neil, P. M. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384–7391 (2007). [CrossRef] [PubMed]
  12. K. Vishwanath, B. Pogue, and M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002). [CrossRef] [PubMed]
  13. L. Zhang, F. Gao, H. He, and H. Zhao, “Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors,” Opt. Express 16, 7214–7223 (2008). [CrossRef] [PubMed]
  14. A. Kim, M. Roy, F. N. Dadani, and B. C. Wilson, “Topographic mapping of subsurface fluorescent structures in tissue using multiwavelength excitation,” J. Biomed. Opt. 15, 066026 (2010). [CrossRef]
  15. S. H. Han and D. J. Hall, “Estimating the depth and lifetime of a fluorescent inclusion in a turbid medium using a simple time-domain optical method,” Opt. Lett. 33, 1035–1037 (2008). [CrossRef] [PubMed]
  16. R. Alford, M. Ogawa, M. Hassan, A. H. Gandjbakhche, P. L. Choyke, and H. Kobayashi, “Fluorescence lifetime imaging of activatable target specific molecular probes,” Contrast Media Mol. Imaging 5, 1–8 (2010). [PubMed]
  17. C. Hille, M. Berg, L. Bressel, D. Munzke, P. Primus, H. G. Lohmannsroben, and C. Dosche, “Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues,” Anal. Bioanal. Chem. 391, 1871–1879 (2008). [CrossRef] [PubMed]
  18. B. W. Pogue, K. S. Samkoe, S. Hextrum, J. A. O’Hara, M. Jermyn, S. Srinivasan, and T. Hasan, “Imaging targeted-agent binding in vivo with two probes,” J. Biomed. Opt. 15, 030513 (2010). [CrossRef] [PubMed]
  19. S. A. Hilderbrand, K. A. Kelly, M. Niedre, and R. Weissleder, “Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging,” Bioconjug. Chem. 19, 1635–1639(2008). [CrossRef] [PubMed]
  20. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336(1989). [CrossRef] [PubMed]
  21. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943). [CrossRef]
  22. A. T. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, “Fluorescence-lifetime-based tomography for turbid media,” Opt. Lett. 30, 3347–3349 (2005). [CrossRef]
  23. A. B. Pravdin, S. P. Chernova, T. G. Papazoglou, and V. V. Tuchin, “Tissue Phantoms,” in Handbook of Optical Biomedical Diagnostics, V.V.Tuchin, ed. (SPIE, 2002), pp. 311–354.
  24. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995). [CrossRef] [PubMed]
  25. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997). [CrossRef]
  26. E. Kuwana and E. M. Sevick-Muraca, “Fluorescence lifetime spectroscopy in multiply scattering media with dyes exhibiting multiexponential decay kinetics,” Biophys. J. 83, 1165–1176 (2002). [CrossRef] [PubMed]
  27. M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow” Proc. SPIE 7555, 75550Z (2010). [CrossRef]
  28. V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28, 1115–1124 (2001). [CrossRef] [PubMed]
  29. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13, 041304 (2008). [CrossRef] [PubMed]
  30. J. T. Elliott, K. M. Tichauer, M. Diop, and K. St. Lawrence, “Fast Monte Carlo fitting of two-layered tissue structures for short source–detector distances,” Proc. SPIE 7896, 789611(2011). [CrossRef]
  31. S. H. Han, S. Farshchi-Heydari, and D. J. Hall, “Analysis of the fluorescence temporal point-spread function in a turbid medium and its application to optical imaging,” J. Biomed. Opt. 13, 064038 (2008). [CrossRef]
  32. D. J. Hall, U. Sunar, S. Farshchi-Heydari, and S. H. Han, “In vivo simultaneous monitoring of two fluorophores with lifetime contrast using a full-field time domain system,” Appl. Opt. 48, D74–D78 (2009). [CrossRef] [PubMed]
  33. C. D. Salthouse, F. Reynolds, J. M. Tam, L. Josephson, and U. Mahmood, “Quantitative measurement of protease-activity with correction of probe delivery and tissue absorption effects,” Sens. Actuators B 138, 591–597 (2009). [CrossRef]
  34. C. D. Salthouse, R. Weissleder, and U. Mahmood, “Development of a time domain fluorimeter for fluorescent lifetime multiplexing analysis,” IEEE Trans. Biomed. Circuits Syst. 2, 204–211 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited