OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Förster resonance energy transfer imaging in vivo with approximated radiative transfer equation

Vadim Y. Soloviev, James McGinty, Daniel W. Stuckey, Romain Laine, Marzena Wylezinska-Arridge, Dominic J. Wells, Alessandro Sardini, Joseph V. Hajnal, Paul M. W. French, and Simon R. Arridge  »View Author Affiliations


Applied Optics, Vol. 50, Issue 36, pp. 6583-6590 (2011)
http://dx.doi.org/10.1364/AO.50.006583


View Full Text Article

Enhanced HTML    Acrobat PDF (707 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a new light transport model, which was applied to three-dimensional lifetime imaging of Förster resonance energy transfer in mice in vivo. The model is an approximation to the radiative transfer equation and combines light diffusion and ray optics. This approximation is well adopted to wide-field time-gated intensity-based data acquisition. Reconstructed image data are presented and compared with results obtained by using the telegraph equation approximation. The new approach provides improved recovery of absorption and scattering parameters while returning similar values for the fluorescence parameters.

© 2011 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(290.0290) Scattering : Scattering
(290.7050) Scattering : Turbid media

ToC Category:
Scattering

History
Original Manuscript: June 20, 2011
Manuscript Accepted: September 12, 2011
Published: December 15, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Vadim Y. Soloviev, James McGinty, Daniel W. Stuckey, Romain Laine, Marzena Wylezinska-Arridge, Dominic J. Wells, Alessandro Sardini, Joseph V. Hajnal, Paul M. W. French, and Simon R. Arridge, "Förster resonance energy transfer imaging in vivo with approximated radiative transfer equation," Appl. Opt. 50, 6583-6590 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-36-6583


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011). [CrossRef] [PubMed]
  2. J. R. Lakowicz, in Principles of Fluorescence Spectroscopy(Plenum, 1999).
  3. D. L. Andrews and D. S. Bradshaw, “Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach,” Eur. J. Phys. 25, 845–858 (2004). [CrossRef]
  4. S. R. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009). [CrossRef]
  5. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006). [CrossRef] [PubMed]
  6. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996). [CrossRef] [PubMed]
  7. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, “Fluorescence-lifetime-based tomography for turbid media,” Opt. Lett. 30, 3347–3349 (2005). [CrossRef]
  8. A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006). [CrossRef] [PubMed]
  9. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009). [CrossRef] [PubMed]
  10. V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A 26, 1805–1813 (2009). [CrossRef]
  11. V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters,” Opt. Lett. 35, 1314–1316 (2010). [CrossRef] [PubMed]
  12. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D 37, 3296–3303 (2004). [CrossRef]
  13. J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D 42, 135103 (2009). [CrossRef]
  14. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time gated data acquisition,” Appl. Opt. 46, 7384–7391 (2007). [CrossRef] [PubMed]
  15. V. Y. Soloviev, J. McGinty, K. B. Tahir, M. A. A. Neil, A. Sardini, J. V. Hajnal, S. R. Arridge, and P. M. W. French, “Fluorescence lifetime tomography of live cells expressing enhanced green fluorescent protein embedded in a scattering medium exhibiting background autofluorescence,” Opt. Lett. 32, 2034–2036(2007). [CrossRef] [PubMed]
  16. J. McGinty, V. Y. Soloviev, K. B. Tahir, R. Laine, D. W. Stuckey, J. V. Hajnal, A. Sardini, P. M. W. French, and S. R. Arridge, “Three-dimensional imaging of Förster resonance energy transfer in heterogeneous turbid media by tomographic fluorescent lifetime imaging,” Opt. Lett. 34, 2772–2774(2009). [CrossRef] [PubMed]
  17. V. V. Sobolev, A Treatise on Radiative Transfer (Van Nostrand, 1963).
  18. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  19. V. Y. Soloviev, C. D’Andrea, P. S. Mohan, G. Valentini, R. Cubeddu, and S. R. Arridge, “Fluorescence lifetime optical tomography with discontinuous Galerkin discretisation scheme,” Biomed. Opt. Express 1, 998–1013 (2010). [CrossRef]
  20. V. Y. Soloviev and S. R. Arridge, “Optical tomography in weakly scattering media in the presence of highly scattering inclusions,” Biomed. Opt. Express 2, 440–451 (2011). [CrossRef] [PubMed]
  21. V. Y. Soloviev and S. R. Arridge, “Fluorescence lifetime optical tomography in weakly scattering media in the presence of highly scattering inclusions,” J. Opt. Soc. Am. A 28, 1513–1523 (2011). [CrossRef]
  22. H. C. van de Hulst, in Light Scattering by Small Particles(Dover, 1981).
  23. M. Born and E. Wolf, Principles of Optics (Pergamon, 1968).
  24. J. Nocedal and S. J. Wright, Numerical Optimization(Springer-Verlag, 1999). [CrossRef]
  25. V. Y. Soloviev and L. V. Krasnosselskaia, “Dynamically adaptive mesh refinement technique for image reconstruction in optical tomography,” Appl. Opt. 45, 2828–2837 (2006). [CrossRef] [PubMed]
  26. V. Y. Soloviev, “Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging,” Med. Phys. 33, 4176–4183(2006). [CrossRef] [PubMed]
  27. R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255(1985). [CrossRef] [PubMed]
  28. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Machine Intell. 12, 629–639 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited