OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes

Takehiro Fukushima, Satoshi Sunada, Takahisa Harayama, Koichiro Sakaguchi, and Yasunori Tokuda  »View Author Affiliations

Applied Optics, Vol. 51, Issue 14, pp. 2515-2520 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the lasing modes of quasi-stadium laser diodes that have confocal cavity geometries, with stripe electrode contacts formed either along the cavity axis or a diamond-shaped trajectory. It was clearly demonstrated that by using narrow electrode contact patterns of 2 μm width, the lowest-order axial and ring modes were excited selectively. On the other hand, the second-lowest-order axial and ring modes were excited by using broad electrode patterns of 14 μm width. Experimentally obtained far-field patterns for lasers with broad and narrow electrode contact patterns agree very well with the simulation results obtained using an extended Fox–Li mode calculation method.

© 2012 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 13, 2011
Revised Manuscript: February 17, 2012
Manuscript Accepted: February 17, 2012
Published: May 4, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Takehiro Fukushima, Satoshi Sunada, Takahisa Harayama, Koichiro Sakaguchi, and Yasunori Tokuda, "Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes," Appl. Opt. 51, 2515-2520 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  2. A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993). [CrossRef]
  3. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998). [CrossRef]
  4. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002). [CrossRef]
  5. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Quasi-stadium laser diodes with an unstable resonator condition,” Opt. Lett. 28, 408–410 (2003). [CrossRef]
  6. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003). [CrossRef]
  7. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004). [CrossRef]
  8. W. Fang, H. Cao, and G. S. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).
  9. M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006). [CrossRef]
  10. T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical phase space revealed by coherent light,” Phys. Rev. Lett. 98, 033902 (2007).
  11. T. Fukushima, S. Shinohara, and T. Harayama, “Light beam output from diamond-shaped total-internal reflection modes by using intracavity air gaps,” Opt. Express 15, 17392–17400(2007). [CrossRef]
  12. S. Shinohara, T. Fukushima, and T. Harayama, “Light emission patterns from stadium-shaped semiconductor microcavity lasers,” Phys. Rev. A 77, 033807 (2008). [CrossRef]
  13. M. Choi, S. Shinohara, and T. Harayama, “Dependence of far-field characteristics on the number of lasing modes in stadium-shaped InGaAsP microlasers,” Opt. Express 16, 17554–17559 (2008). [CrossRef]
  14. C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009). [CrossRef]
  15. S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limaçon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801(R) (2009). [CrossRef]
  16. Q. Song, W. Fang, B. Liu, S. T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
  17. C. H. Yi, M. W. Kim, and C. M. Kim, “Lasing characteristics of a limaçon-shaped microcavity laser,” Appl. Phys. Lett. 95, 141107 (2009). [CrossRef]
  18. S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010). [CrossRef]
  19. T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photonics Rev. 5, 247–271 (2011). [CrossRef]
  20. T. Fukushima, “Analysis of resonator eigenmodes in symmetric quasi-stadium laser diodes,” J. Lightwave Technol. 18, 2208–2216 (2000). [CrossRef]
  21. T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207(R) (2003). [CrossRef]
  22. T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro, “Morphological dependence of lasing modes in two-dimensional quasi-stadium laser diodes,” J. Opt. Soc. Am. B 21, 935–943 (2004). [CrossRef]
  23. T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Select Topics Quantum Electron. 10, 1039–1051 (2004). [CrossRef]
  24. T. Fukushima, T. Tanaka, and T. Harayama, “Ring and axis mode switching in multielectrode strained InGaAsP multiple-quantum-well quasi-stadium laser diodes,” Appl. Phys. Lett. 87, 191103 (2005). [CrossRef]
  25. M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasi-stadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006). [CrossRef]
  26. T. Fukushima, T. Tanaka, and T. Harayama, “High-quality lowest-loss-mode lasing in GaAs quasi-stadium laser diodes having unstable resonators,” Opt. Lett. 32, 3397–3399 (2007). [CrossRef]
  27. M. Choi, T. Fukushima, and T. Harayama, “Alternate oscillations in quasi-stadium laser diodes,” Phys. Rev. A 77, 063814 (2008). [CrossRef]
  28. S. Shinohara, T. Harayama, and T. Fukushima, “Fresnel filtering of Gaussian beams in microcavities,” Opt. Lett. 36, 1023–1025 (2011). [CrossRef]
  29. S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995). [CrossRef]
  30. T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Express 2, 21–28 (1998). [CrossRef]
  31. H. C. Casey and M. B. Panish, Heterostructure Lasers(Academic, 1978).
  32. H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi, “A GaAs-AlXGa1-XAs double heterostructure planar stripe laser” Jpn. J. Appl. Phys. 12, 1585–1592(1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited