OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Hologram reconstruction corrected for measurements through layers with different refractive indices in digital in-line holographic microscopy

Gonzalo H. Sendra, Sebastian Weisse, Stojan Maleschlijski, and Axel Rosenhahn  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3416-3423 (2012)
http://dx.doi.org/10.1364/AO.51.003416


View Full Text Article

Enhanced HTML    Acrobat PDF (1070 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digital in-line holographic microscopy (DIHM) using point sources has been shown to be a versatile technique, especially for three-dimensional tracking of particles or microorganisms. However, the spherical source wave is altered when measurements are performed through layers with different refractive indices, such as water cuvettes. The situations where a layer of medium with a refractive index different than that of the predominant surrounding propagation medium (usually air) is situated behind or in front of the plane to be reconstructed are analyzed in detail, and a general approach for reconstruction under such circumstances is developed. The proposed refractive index correction is tested experimentally and compared to conventional reconstruction algorithms. Using 3D traces of swimming algal spores, the influence on the velocity calculation is also shown.

© 2012 Optical Society of America

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Holography

History
Original Manuscript: January 23, 2012
Revised Manuscript: March 21, 2012
Manuscript Accepted: March 24, 2012
Published: May 30, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Gonzalo H. Sendra, Sebastian Weisse, Stojan Maleschlijski, and Axel Rosenhahn, "Hologram reconstruction corrected for measurements through layers with different refractive indices in digital in-line holographic microscopy," Appl. Opt. 51, 3416-3423 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-16-3416


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948). [CrossRef]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  3. H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, “Digital in-line holography with numerical reconstruction,” Proc. SPIE 3744, 65–74 (1999). [CrossRef]
  4. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  5. M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007). [CrossRef]
  6. J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. USA 107, 2082–2087 (2010). [CrossRef]
  7. N. I. Lewis, W. B. Xu, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, “Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography,” Phycologia 45, 61–70 (2006).
  8. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104, 17512–17517 (2007). [CrossRef]
  9. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003). [CrossRef]
  10. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002). [CrossRef]
  11. S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011). [CrossRef]
  12. T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006). [CrossRef]
  13. A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008). [CrossRef]
  14. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005). [CrossRef]
  15. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  16. M. H. Jericho and H. Jürgen Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 3–30.
  17. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31, 1211–1213 (2006). [CrossRef]
  18. M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009). [CrossRef]
  19. F. Zhang, G. Pedrini, and W. Osten, “Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution,” Opt. Lett. 31, 1633–1635 (2006). [CrossRef]
  20. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001). [CrossRef]
  21. T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express 1, 610–616 (2010). [CrossRef]
  22. T. Zhang, and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  23. M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35, 217–219 (2010). [CrossRef]
  24. R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010). [CrossRef]
  25. M. Heydt, P. Divos, M. Grunze, and A. Rosenhahn, “Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces,” Eur. Phys. J. E 30, 141–148 (2009). [CrossRef]
  26. M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002). [CrossRef]
  27. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited