OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Dual-wavelength slightly off-axis digital holographic microscopy

Junwei Min, Baoli Yao, Peng Gao, Rongli Guo, Baiheng Ma, Juanjuan Zheng, Ming Lei, Shaohui Yan, Dan Dan, Tao Duan, Yanlong Yang, and Tong Ye  »View Author Affiliations

Applied Optics, Vol. 51, Issue 2, pp. 191-196 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (687 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose dual-wavelength digital holographic microscopy with a slightly off-axis configuration. The axial measurement range without phase ambiguity is extended to the micrometer range by synthesizing a beat wavelength between the two wavelengths with separation of 157 nm. Real-time measurement of the specimen is made possible by virtue of the high wavelength selectivity of the Bayer mosaic filtered color CCD camera. The principle of the method is exposed, and the practicability of the proposed configuration is demonstrated by the experimental results on a vortex phase plate and a rectangular phase step.

© 2012 Optical Society of America

OCIS Codes
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(180.3170) Microscopy : Interference microscopy
(090.1705) Holography : Color holography
(090.5694) Holography : Real-time holography

ToC Category:

Original Manuscript: July 11, 2011
Revised Manuscript: September 21, 2011
Manuscript Accepted: September 22, 2011
Published: January 10, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Junwei Min, Baoli Yao, Peng Gao, Rongli Guo, Baiheng Ma, Juanjuan Zheng, Ming Lei, Shaohui Yan, Dan Dan, Tao Duan, Yanlong Yang, and Tong Ye, "Dual-wavelength slightly off-axis digital holographic microscopy," Appl. Opt. 51, 191-196 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  3. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001). [CrossRef]
  4. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef]
  5. C. J. Mann, L. Yu, C. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005). [CrossRef]
  6. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006). [CrossRef]
  7. M. Potcoava and M. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48, H9–H15 (2009). [CrossRef]
  8. D. C. Ghighlia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley-Interscience, 1998).
  9. A. T. Forrester, W. E. Parkins, and E. Gerjuoy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72, 728–728 (1947). [CrossRef]
  10. J. Gass, A. Dakoff, and M. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003). [CrossRef]
  11. D. Parshall and M. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451–459 (2006). [CrossRef]
  12. A. Khmaladze, M. Kim, and C. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008). [CrossRef]
  13. A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008). [CrossRef]
  14. L. Yu and M. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12, 6632–6641 (2004). [CrossRef]
  15. P. Almoro, W. Garcia, and C. Saloma, “Colored object recognition by digital holography and a hydrogen Raman shifter,” Opt. Express 15, 7176–7181 (2007). [CrossRef]
  16. S. Yeom, B. Javidi, P. Ferraro, D. Alfieri, S. DeNicola, and A. Finizio, “Three-dimensional color object visualization and recognition using multi-wavelength computational holography,” Opt. Express 15, 9394–9402 (2007). [CrossRef]
  17. B. Javidi, P. Ferraro, S. Hong, S. Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30, 144–146 (2005). [CrossRef]
  18. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008). [CrossRef]
  19. P. Almoro, M. Cadatal, W. Garcia, and C. Saloma, “Pulsed full-color digital holography with a hydrogen Raman shifter,” Appl. Opt. 43, 2267–2271 (2004). [CrossRef]
  20. J. Rosen, Holography, Research and Technologies (InTech, 2011).
  21. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000). [CrossRef]
  22. A. Wada, M. Kato, and Y. Ishii, “Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes,” J. Opt. Soc. Am. A 25, 3013–3020 (2008). [CrossRef]
  23. R. Onodera and Y. Ishii, “Two-wavelength interferometry that uses a Fourier-transform method,” Appl. Opt. 37, 7988–7994 (1998). [CrossRef]
  24. J. Kühn, T. Colombb, F. Montfort, F. Charrière, Y. Emeryc, E. Cuchec, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007). [CrossRef]
  25. N. Shaked, Y. Zhu, M. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009). [CrossRef]
  26. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19, 1930–1935 (2011). [CrossRef]
  27. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  28. T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (716 KB)     
» Media 2: AVI (174 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited