OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Noniterative boundary-artifact-free wavefront reconstruction from its derivatives

Pierre Bon, Serge Monneret, and Benoit Wattellier  »View Author Affiliations

Applied Optics, Vol. 51, Issue 23, pp. 5698-5704 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1003 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wavefront sensors are usually based on measuring the wavefront derivatives. The most commonly used approach to quantitatively reconstruct the wavefront uses discrete Fourier transform, which leads to artifacts when phase objects are located at the image borders. We propose here a simple approach to avoid these artifacts based on the duplication and antisymmetrization of the derivatives data, in the derivative direction, before integration. This approach completely erases the border effects by creating continuity and differentiability at the edge of the image. We finally compare this corrected approach to the literature on model images and quantitative phase images of biological microscopic samples, and discuss the effects of the artifacts on the particular application of dry mass measurements.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(100.5070) Image processing : Phase retrieval
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(110.7348) Imaging systems : Wavefront encoding

ToC Category:
Imaging Systems

Original Manuscript: June 15, 2012
Revised Manuscript: July 11, 2012
Manuscript Accepted: July 11, 2012
Published: August 8, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Pierre Bon, Serge Monneret, and Benoit Wattellier, "Noniterative boundary-artifact-free wavefront reconstruction from its derivatives," Appl. Opt. 51, 5698-5704 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Druon, G. Chériaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, G. Mourou, J. C. Chanteloup, and G. Vdovin, “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett. 23, 1043–1045 (1998). [CrossRef]
  2. B. Wattellier, J. Fuchs, J. P. Zou, K. Abdeli, H. Pépin, and C. Haefner, “Repetition rate increase and diffraction-limited focal spots for a nonthermal-equilibrium100-tw nd:glass laser chain by use of adaptive optics,” Opt. Lett. 29, 2494–2496 (2004). [CrossRef]
  3. S. C. West, J. H. Burge, R. S. Young, D. S. Anderson, C. Murgiuc, D. A. Ketelsen, and H. M. Martin, “Optical metrology for two large highly aspheric telescope mirrors,” Appl. Opt. 31, 7191–7197 (1992). [CrossRef]
  4. W. Boucher, S. Velghe, B. Wattellier, and D. Gatinel, “Intraocular lens characterization using a quadric-wave lateral shearing interferometer wave front sensor,” Proc. SPIE 7102, 71020Q (2008). [CrossRef]
  5. C. Roddier and J. Vernin, “Relative contribution of upper and lower atmosphere to integrated refractive-index profiles,” Appl. Opt. 16, 2252–2256 (1977). [CrossRef]
  6. D. Dayton, B. Pierson, B. Spielbusch, and J. Gonglewski, “Atmospheric structure function measurements with a Shack–Hartmann wave-front sensor,” Opt. Lett. 17, 1737–1739 (1992). [CrossRef]
  7. N. Muller, V. Michau, C. Robert, and G. Rousset, “Differential focal anisoplanatism in laser guide star wavefront sensing on extremely large telescopes,” Opt. Lett. 36, 4071–4073 (2011). [CrossRef]
  8. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  9. T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998). [CrossRef]
  10. C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for gratingbased differential phase contrastimaging using hard x-rays,” Opt. Express 15, 1175–1181 (2007). [CrossRef]
  11. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid,” Opt. Express 19, 19781–19789 (2011). [CrossRef]
  12. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009). [CrossRef]
  13. G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012). [CrossRef]
  14. D. P. Salas-Peimbert, D. Malacara-Doblado, V. M. Durán-Ramírez, G. Trujillo-Schiaffino, and D. Malacara-Hernández, “Wave-front retrieval from Hartmann test data,” Appl. Opt. 44, 4228–4238 (2005). [CrossRef]
  15. R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656–660 (1971).
  16. V. Ronchi, “Forty years of history of a grating interferometer,” Appl. Opt. 3, 437–451 (1964). [CrossRef]
  17. J. Primot and N. Gurineau, “Extended hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard,” Appl. Opt. 39, 5715–5720 (2000). [CrossRef]
  18. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004). [CrossRef]
  19. S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008). [CrossRef]
  20. R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375–378 (1977). [CrossRef]
  21. F. Roddier, and C. Roddier, “Wavefront reconstruction using iterative Fourier transforms,” Appl. Opt. 30, 1325–1327 (1991). [CrossRef]
  22. D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  23. A. Talmi and E. N. Ribak, “Wavefront reconstruction from its gradients,” J. Opt. Soc. Am. A 23, 288–297 (2006). [CrossRef]
  24. R. Barer, “Interference microscopy and mass determination,” Nature 169, 366–367 (1952). [CrossRef]
  25. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phasederivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005). [CrossRef]
  26. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759–2768 (1998). [CrossRef]
  27. D. L. Fried and J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt. 31, 2865–2882 (1992). [CrossRef]
  28. B. Rappaz, E. Cano, T. Colomb, J. Khn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited