OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

High sensitive detection of nitric oxide using laser induced photoacoustic spectroscopy at 213 nm

Mohammed A. Gondal, Ahmed Asaad I. Khalil, and Noura Al-Suliman  »View Author Affiliations

Applied Optics, Vol. 51, Issue 23, pp. 5724-5734 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Trace level detection of nitric oxide (NO) is of great interest for a wide range of applications such as environment and human health. For this purpose, a high sensitive sensor based photoacoustic spectroscopy (PAS) principle has been developed at our laboratory for detection of NO at very low concentration (ppbV). For optimization of the PAS signal and to achieve higher sensitivity, parametric dependence investigation was carried out where PAS signal dependence on NO gas pressure, cell geometry, buffer gas (Ar, N2, He), and laser pulse energy used three PAS cells developed locally. The best sensitivity achieved with three cells was 41, 11, 20 ppbv, respectively. It is worth reporting that the best PAS signal to noise ratio was achieved by using a cylindrical cell having three acoustic filters and argon as a buffer gas.

© 2012 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:

Original Manuscript: April 16, 2012
Revised Manuscript: May 26, 2012
Manuscript Accepted: June 21, 2012
Published: August 9, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Mohammed A. Gondal, Ahmed Asaad I. Khalil, and Noura Al-Suliman, "High sensitive detection of nitric oxide using laser induced photoacoustic spectroscopy at 213 nm," Appl. Opt. 51, 5724-5734 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. W. Sigrist, “Air monitoring by spectroscopy techniques,” in Chemical Analysis (Wiley, 1994), Vol. 127, Chap. 3.
  2. J. A. Logan, “Nitrogen oxides in the troposphere: global and regional budgets,” J. Geophys. Res. 88, 10785–10807 (1983). [CrossRef]
  3. H. B. Singh, “Reactive nitrogen in the troposphere,” Environ. Sci. Technol. 21, 320–327 (1987). [CrossRef]
  4. Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997). [CrossRef]
  5. U. Platt, D. Perner, and H. W. Patz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329–6335 (1979). [CrossRef]
  6. U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV,” J. Geophys. Res. 85, 7453–7458 (1980). [CrossRef]
  7. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic TechniquesM. Sigrist, ed. (Wiley, 1994).
  8. F. Fredriksson, B. Galle, K. Nystrom, and S. Svanberg, “Mobile lidar system for environmental probing,” Appl. Opt. 20, 4181–4189 (1981). [CrossRef]
  9. A. A. I. Khalil, M. A. Gondal, and N. Al-Suliman, “Resonant photo-acoustic detection of carbon monoxide with UV laser at 213 nm,” Appl. Phys. B 103, 441–450 (2011). [CrossRef]
  10. V. Spagnolo, A. A. Kostreve, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010). [CrossRef]
  11. A. Elia, P. M. Lugara, and C. Giancaspro, “Photoacoustic detection of nitric oxide by use of a quantum-cascade laser,” Opt. Lett. 30, 988–990 (2005). [CrossRef]
  12. S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009). [CrossRef]
  13. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100, 627–635 (2010). [CrossRef]
  14. S. H. Lee, J. Hirokawa, Y. Kajii, and H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997). [CrossRef]
  15. A. Mikl’os, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001). [CrossRef]
  16. P. Hess, “Resonant photoacoustic spectroscopy in topics in current chemistry,” in Topics in Current Chemistry (Springer-Verlag, 1983), Vol. 111, pp. 1–32.
  17. J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46, 440–471 (2011). [CrossRef]
  18. M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195–3201 (1997). [CrossRef]
  19. M. A. Gondal and Z. H. Yamani, “Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection,” Appl. Opt. 46, 7083–7090 (2007). [CrossRef]
  20. M. A. Gondal and J. Mastromarino, “Pulsed laser photoacoustic detection of SO2 near 225.7 nm,” Appl. Opt. 40, 2010–2016 (2001). [CrossRef]
  21. M. A. Gondal, M. A. Dastageer, and Z. H. Yamani, “Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration,” J. Environ. Sci. Health, Part A 44, 1457–1464 (2009). [CrossRef]
  22. C. Haisch, “Photoacoustic spectroscopy for analytical measurements,” Meas. Sci. Technol. 23, 012001 (2012). [CrossRef]
  23. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, 1979).
  24. J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006). [CrossRef]
  25. L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken, and M. Sillanpaa, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC, Trends Anal. Chem. 30, 1704–1715 (2011). [CrossRef]
  26. J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996). [CrossRef]
  27. H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys. B 70, 275–280 (2000). [CrossRef]
  28. R. Gerlach and N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. A 23, 319–326 (1980). [CrossRef]
  29. Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic Press, 1977).
  30. C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, and J. Sneider, “Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995). [CrossRef]
  31. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010). [CrossRef]
  32. C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009). [CrossRef]
  33. H. Ganser, W. Urban, and J. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003). [CrossRef]
  34. G. N. Rao and A. Karpf, “External cavity tunable quantum cascade lasers and their applications to trace gas monitoring,” Appl. Opt. 50, A100–A115 (2011). [CrossRef]
  35. Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, 1977).
  36. M. Germer and M. Wolff, “Quantum cascade laser line width investigations for high resolution photoacoustic spectroscopy,” Appl. Opt. 48, B80–B86 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited