OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Time-domain diffuse optical tomography processing by using the Mellin–Laplace transform

Lionel Hervé, Agathe Puszka, Anne Planat-Chrétien, and Jean-Marc Dinten  »View Author Affiliations

Applied Optics, Vol. 51, Issue 25, pp. 5978-5988 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1022 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the use of the Mellin–Laplace transform for reconstructing optical parameters from time-resolved optical tomography in diffusive media. We present here its definition, its mathematical properties, and its sensitivity to variations of optical properties. The method was validated on two-dimensional reconstructions from simulation in the reflection geometry. We conclude that reconstructions based on the Mellin–Laplace transform are more robust to noise than the methods using first moments.

© 2012 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 16, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: July 8, 2012
Published: August 23, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Lionel Hervé, Agathe Puszka, Anne Planat-Chrétien, and Jean-Marc Dinten, "Time-domain diffuse optical tomography processing by using the Mellin–Laplace transform," Appl. Opt. 51, 5978-5988 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  2. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005). [CrossRef]
  3. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998). [CrossRef]
  4. S. D. Konecky, R. Choe, A. Corlu, K. Lee, R. Wiener, S. M. Srinivas, J. R. Saffer, R. Freifelder, J. S. Karp, N. Hajjioui, F. Azar, and A. G. Yodh, “Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography,” Med. Phys. 35, 446–455 (2008). [CrossRef]
  5. J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13, 041305 (2008). [CrossRef]
  6. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005). [CrossRef]
  7. J. Wang, B. Pogue, S. Jiang, and K. D. Paulsen, “Near-infrared tomography of breast cancer hemoglobin, water, lipid, and scattering using combined frequency domain and CW measurement,” Opt. Lett. 35, 82–84 (2010). [CrossRef]
  8. I. Nissilä, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Järvenpää, L. Lipiäinen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J. Biomed. Opt. 11, 064015 (2006). [CrossRef]
  9. M. Schweiger and S. R. Arridge, “Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time-of-flight in tissue,” Appl. Opt. 36, 9042–9049 (1997). [CrossRef]
  10. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999). [CrossRef]
  11. H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 44, 1905–1916 (2005). [CrossRef]
  12. J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15, 16400–16412 (2007). [CrossRef]
  13. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002). [CrossRef]
  14. F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16, 13104–13121 (2008). [CrossRef]
  15. Q. Zhao, L. Spinelli, A. Bassi, G. Valentini, D. Contini, A. Torricelli, R. Cubeddu, G. Zaccanti, F. Martelli, and A. Pifferi, “Functional tomography using a time-gated ICCD camera,” Biomed. Opt. Express 2, 705–716 (2011). [CrossRef]
  16. F. Nouizi, M. Torregrossa, R. Chabrier, and P. Poulet, “Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography,” Opt. Express 19, 12843–12854(2011). [CrossRef]
  17. N. Ducros, L. Hervé, A. Da Silva, J. M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. Theoretical material,” Phys. Med. Biol. 54, 7089–7105 (2009). [CrossRef]
  18. B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl. Opt. 44, 1942–1947 (2005). [CrossRef]
  19. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43, 3037–3047 (2004). [CrossRef]
  20. A. Gibson, R. M. Yusof, H. Dehghani, J. Riley, N. Everdell, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003). [CrossRef]
  21. E. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmid, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001). [CrossRef]
  22. R. Pierrat, L. J. Greffet, and R. Carminati, “Photon diffusion coefficient in scattering and absorbing media,” J. Opt. Soc. Am. A 23, 1106–1110 (2006). [CrossRef]
  23. G. B. Arfken, H. J. Weber, and H. J. Weber, Mathematical Methods for Physicists (Academic, 1995).
  24. A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011). [CrossRef]
  25. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).
  26. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  27. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source–detector separation and fast single-photon gating,” Phys. Rev. Lett. 100, 138101 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited