OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past

Chuanmin Hu, Lian Feng, Zhongping Lee, Curtiss O. Davis, Antonio Mannino, Charles R. McClain, and Bryan A. Franz  »View Author Affiliations


Applied Optics, Vol. 51, Issue 25, pp. 6045-6062 (2012)
http://dx.doi.org/10.1364/AO.51.006045


View Full Text Article

Enhanced HTML    Acrobat PDF (1560 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past and current sensors used different signal levels, formats, and conventions to specify these critical parameters, making it difficult to make cross-sensor comparisons or to establish standards for future sensor design. The goal of this study is to quantify these parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers. Using measurements from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODISA) under various solar zenith angles (SZAs), typical (Ltypical) and maximum (Lmax) at-sensor radiances from the visible to the shortwave IR were determined. The Ltypical values at an SZA of 45° were used as constraints to calculate SNRs of 10 multiband sensors at the same Ltypical radiance input and 2 hyperspectral sensors at a similar radiance input. The calculations were based on clear-water scenes with an objective method of selecting pixels with minimal cross-pixel variations to assure target homogeneity. Among the widely used ocean color sensors that have routine global coverage, MODISA ocean bands (1 km) showed 2–4 times higher SNRs than the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (1 km) and comparable SNRs to the Medium Resolution Imaging Spectrometer (MERIS)-RR (reduced resolution, 1.2 km), leading to different levels of precision in the retrieved Chl data product. MERIS-FR (full resolution, 300 m) showed SNRs lower than MODISA and MERIS-RR with the gain in spatial resolution. SNRs of all MODISA ocean bands and SeaWiFS bands (except the SeaWiFS near-IR bands) exceeded those from prelaunch sensor specifications after adjusting the input radiance to Ltypical. The tabulated Ltypical, Lmax, and SNRs of the various multiband and hyperspectral sensors under the same or similar radiance input provide references to compare sensor performance in product precision and to help design future missions such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Pre-Aerosol-Clouds-Ecosystems (PACE) mission currently being planned by the U.S. National Aeronautics and Space Administration (NASA).

© 2012 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Image Processing

History
Original Manuscript: April 11, 2012
Revised Manuscript: June 14, 2012
Manuscript Accepted: July 10, 2012
Published: August 24, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics
November 9, 2012 Spotlight on Optics

Citation
Chuanmin Hu, Lian Feng, Zhongping Lee, Curtiss O. Davis, Antonio Mannino, Charles R. McClain, and Bryan A. Franz, "Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past," Appl. Opt. 51, 6045-6062 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-25-6045


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Fishman, J. Al-Saadi, P., Bontempi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. DiGiacomo, A. Eldering, D. Edwards, J. Goes, J. Herman, C. Hu, L. Iraci, D. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, GEO-CAPE Atmospheric Science Working Group, and GEO-CAPE Ocean Science Working Group, “Fulfilling the mandate and meeting the challenges of the nation’s next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meterol. Soc.(to be published).
  2. National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future (National Academic Press, 2007) ( http://www.nap.edu/catalog/11820.html ).
  3. National Aeronautics and Space Administration, “Responding to the challenge of climate and environmental change: NASA’s plan for a climate-centric architecture for Earth observations and applications from space” (NASA, 2010) ( http://science.nasa.gov/earth-science/ ).
  4. C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239–249(2001). [CrossRef]
  5. R. M. Letelier and M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996). [CrossRef]
  6. http://suzaku.eorc.jaxa.jp/GLI/ov/spec_table.html .
  7. T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, and M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998). [CrossRef]
  8. International Ocean-Colour Coordinating Group, “Minimum requirements for an operational, ocean-colour sensor for the open ocean,” IOCCG Report Number 1 (International Ocean-Colour Coordinating Group, 1998).
  9. X. Xiong, A. Angal, and X. Xie, “On-orbit noise characterization for MODIS reflective solar bands,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2008 (IEEE, 2008).
  10. J. R. E. Eplee, F. S. Patt, R. A. Barnes, and C. R. McClain, “SeaWiFS long-term solar diffuser reflectance and sensor noise analyses,” Appl. Opt. 46, 762–773 (2007). [CrossRef]
  11. B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. B. Z. Ahmad, and C. R. McClain, “MODIS land bands for ocean remote sensing applications,” presented at Ocean Optics XVIII, Montreal, Canada, 9–13 October 2006, http://oceancolor.gsfc.nasa.gov/staff/franz/papers/franz_et_al_2006_oo.pdf .
  12. C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109, 183–195 (2007). [CrossRef]
  13. Z. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007). [CrossRef]
  14. R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381–392 (2004). [CrossRef]
  15. Z. Yu, X. Chen, B. Zhou, L. Tian, X. Yuan, and L. Feng, “Assessment of total suspended sediment concentrations in Poyang Lake using HJ-1A/1B CCD imagery,” Chin. J. Oceanol. Limnol. 30, 295–304 (2012). [CrossRef]
  16. R. L. Lucke, M. Corson, N. R. McGlothlin, S. D. Butcher, D. L. Wood, D. R. Korwan, R. R. Li, W. A. Snyder, C. O. Davis, and D. T. Chen, “Hyperspectral Imager for the Coastal Ocean: instrument description and first images,” Appl. Opt. 50, 1501–1516 (2011). [CrossRef]
  17. http://glovis.usgs.gov .
  18. http://hico.coas.oregonstate.edu .
  19. Information sources (accessed on 19 January 2012): MODIS: http://modis.gsfc.nasa.gov/about/specifications.php ; MERIS: http://envisat.esa.int/earth/www/object/index.cfm?fobjectid=1665&contentid=3744 ; SeaWiFS: http://oceancolor.gsfc.nasa.gov/SeaWiFS/SEASTAR/SPACECRAFT.html ; OCM: http://www.isro.org/satellites/irs-p4_oceansat.aspx ; GOCI: http://kosc.kordi.re.kr/oceansatellite/coms-goci/specification.kosc ; CZCS: http://oceancolor.gsfc.nasa.gov/CZCS/czcs_instrument.html ; Landsat7 ETM+: http://landsat.gsfc.nasa.gov/about/etm+.html ; Landsat5 TM: http://landsat.gsfc.nasa.gov/about/tm.html ; HJ-CCD: http://www.cresda.com/n16/n1130/n1582/8384.html ; GOES/Imager: http://www.class.ncdc.noaa.gov/release/data_available/goes/index.htm ; HICO: http://hico.coas.oregonstate.edu ; Hyperion: http://edcsns17.cr.usgs.gov/eo1/sensors/hyperion .
  20. R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574–585 (2001). [CrossRef]
  21. W. J. Moses, J. H. Bowles, R. L. Lucke, and M. R. Corson, “Impact of signal-to-noise ratio in a hyperspectral sensor on the accuracy of biophysical parameter estimation in case II waters,” Opt. Express 20, 4309–4330 (2012). [CrossRef]
  22. P. J. Curran and J. L. Dungan, “Estimation of signal-to-noise: a new procedure applied to AVIRIS data,” IEEE Trans. Geosci. Remote Sens. 27, 620–628 (1989). [CrossRef]
  23. B.-C. Gao, “An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers,” Remote Sens. Environ. 43, 23–33 (1993). [CrossRef]
  24. R. O. Green, B. E. Pavri, and T. G. Chrien, “On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina,” IEEE Trans. Geosci. Remote Sens. 41, 1194–1203 (2003). [CrossRef]
  25. F. A. Kruse, J. W. Boardman, and J. F. Huntington, “Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping,” IEEE Trans. Geosci. Remote Sens. 41, 1388–1400 (2003). [CrossRef]
  26. M. Wettle, V. E. Brando, and A. G. Dekker, “A methodology for retrieval of environmental noise equivalent spectra applied to four Hyperion scenes of the same tropical coral reef,” Remote Sens. Environ. 93, 188–197 (2004). [CrossRef]
  27. C. R. McClain, S. R. Signorini, and J. R. Christian, “Subtropical gyre variability observed by ocean-color satellites,” Deep Sea Research II: Top. Stud. Oceanogr. 51, 281–301 (2004). [CrossRef]
  28. R. A. Barnes, W. L. Barnes, W. E. Esaias, and C. R. McClain, “Prelaunch Acceptance report for the SeaWiFS radiometer,” NASA Technical Memo 104566, S. B. Hooker, E. R. Firestone, and J. G. Acker, eds. (NASA Goddard Space Flight Center, 1994), Vol. 22.
  29. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17081–17106 (1997). [CrossRef]
  30. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef]
  31. S. Delwart, “MERIS US workshop: instrument characterization overview,” presented at ESA/MERIS Workshop, OCEANS.US Office, Silver Spring, Md., USA, 14 July 2008( http://oceancolor.gsfc.nasa.gov/MEETINGS/ESA_MERIS/presentations/InstCharacOverview.pdf ).
  32. C. Hu, F. Lian, and Z. Lee, “Evaluation of GOCI sensitivity for at-sensor radiance and GDPS-retrieved chlorophyll-a products,” submitted to Ocean Science J..
  33. C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012). [CrossRef]
  34. J. E. O’Reilly, S. Maritorena, M. O’Brien, D. Siegal, D. Toole, D. Menzies, R. Smith, J. Mueller, B. Mitchell, S. Hooker, C. McClain, K. Carder, F. Müller-Karger, M. Kahru, F. Chavez, P. Strutton, G. Cota, L. Harding, A. Magnuson, D. Phinney, G. Moore, J. Aiken, K. Arrigo, R. Letelier, and M. Culver, “SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3,” in NASA Technical Memorandum 2000—206892 SeaWiFS Postlaunch Technical Report Series, S. Hooker and E. Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 11.
  35. T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens. 28, 1469–1486 (2007). [CrossRef]
  36. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999). [CrossRef]
  37. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef]
  38. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002). [CrossRef]
  39. S. Sathyendranath, L. Prieur, and A. Morel, “A three component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989). [CrossRef]
  40. M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosci. Discuss. 5, 4235–4270 (2008). [CrossRef]
  41. C. Hu, F. E. Muller-Karger, C. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: a regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005). [CrossRef]
  42. Y. Huot, C. A. Brown, and J. J. Cullen, “New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products,” Limnol. Oceanogr.: Methods 3, 108–130 (2005). [CrossRef]
  43. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46, 1535–1547 (2007). [CrossRef]
  44. J. R. Morrison, “In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: a simple algorithm, observations, and a model,” Limnol. Oceanogr. 48, 618–631 (2003). [CrossRef]
  45. S. B. Hooker, E. R. Firestone, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Technical Memorandum, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited