OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Ramsauer approach for light scattering on nonabsorbing spherical particles and application to the Henyey–Greenstein phase function

Karim Louedec and Marcel Urban  »View Author Affiliations


Applied Optics, Vol. 51, Issue 32, pp. 7842-7852 (2012)
http://dx.doi.org/10.1364/AO.51.007842


View Full Text Article

Enhanced HTML    Acrobat PDF (872 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new method to study light scattering on nonabsorbing spherical particles. This method is based on the Ramsauer approach, a model known in atomic and nuclear physics. Its main advantage is its intuitive understanding of the underlying physics phenomena. We show that although the approximations are numerous, the Ramsauer analytical solutions describe fairly well the scattering phase function and the total cross section. Then this model is applied to the Henyey–Greenstein parameterization of the scattering phase function to give a relation between its asymmetry parameter and the mean particle size.

© 2012 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(050.1970) Diffraction and gratings : Diffractive optics
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.1310) Scattering : Atmospheric scattering
(290.4020) Scattering : Mie theory
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: August 20, 2012
Revised Manuscript: October 2, 2012
Manuscript Accepted: October 4, 2012
Published: November 9, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Karim Louedec and Marcel Urban, "Ramsauer approach for light scattering on nonabsorbing spherical particles and application to the Henyey–Greenstein phase function," Appl. Opt. 51, 7842-7852 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-32-7842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. C. Van De Hulst, Light Scattering by Small Particles(Dover, 1981).
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  3. G. Mie, “Beiträge zur Optik Trüber-Medien, speziell Kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  4. C. W. Ramsauer, “Über den Wirkungsquerschnitt der Gasmoleküle gegenüber langsamen Elektronen,” Ann. Phys. 369, 513–540 (1921). [CrossRef]
  5. W. F. Egelhoff, “Semiclassical explanation of the generalized Ramsauer–Townsend minima in electron-atom scattering,” Phys. Rev. Lett. 71, 2883–2886 (1993). [CrossRef]
  6. D. E. Golden and H. W. Bandel, “Low-energy e−-Ar total scattering cross sections: the Ramsauer–Townsend effect,” Phys. Rev. 149, 58–59 (1966). [CrossRef]
  7. G. P. Karwasz, “Positrons—an alternative probe to electron scattering,” Eur. Phys. J. D 35, 267–278 (2005). [CrossRef]
  8. R. S. Grace, W. M. Pope, D. L. Johnson, and J. G. Skofronick, “Ramsauer–Townsend effect in the total cross section of He4+He4 and He3+He3,” Phys. Rev. A 14, 1006–1008 (1976). [CrossRef]
  9. R. W. Bauer, J. D. Anderson, S. M. Grimes, and V. A. Madsen, Application of Simple Ramsauer Model to Neutron Total Cross Sections (Lawrence Livermore National Laboratory, 1997), preprint.
  10. S. Fernbach, R. Serber, and T. B. Taylor, “The scattering of high energy neutrons by nuclei,” Phys. Rev. 75, 1352–1355 (1949). [CrossRef]
  11. R. S. Gowda, S. V. Surya Narayan, and S. Ganesan, “The Ramsauer model for the total cross sections of neutron nucleus scattering,” http://arxiv.org/abs/nucl-th/0506004 .
  12. J. M. Peterson, “Neutron giant resonances—nuclear Ramsauer effect,” Phys. Rev. 125, 955–963 (1962). [CrossRef]
  13. W. P. Abfalterer, F. B. Bateman, F. S. Dietrich, R. W. Finlay, R. C. Haight, and G. L. Morgan, “Measurement of neutron total cross sections up to 560 MeV,” Phys. Rev. C 63, 044608 (2001). [CrossRef]
  14. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef]
  15. I. Weiner, M. Rust, and T. D. Donnelly, “Particle size determination: an undergraduate lab in Mie scattering,” Am. J. Phys. 69, 129–136 (2001). [CrossRef]
  16. http://www.philiplaven.com/mieplot.htm .
  17. B. Barkey, M. Bailey, K.-N. Liou, and J. Hallett, “Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber,” Appl. Opt. 41, 5792–5796 (2002). [CrossRef]
  18. J.-L. Castagner and I. J. Bigio, “Particle sizing with a fast polar nephelometer,” Appl. Opt. 46, 527–532 (2007). [CrossRef]
  19. http://www.sigmaaldrich.com .
  20. S. V. Surya Narayan, R. S. Gowda, and S. Ganesan, “Empirical estimates of the neutron-nucleus scattering cross sections,” http://arxiv.org/abs/nucl-th/0409005 .
  21. D. Toublanc, “Henyey–Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270–3274 (1996). [CrossRef]
  22. O. Boucher, “On aerosol shortwave forcing and the Henyey–Greenstein phase function,” J. Atmos. Sci. 55, 128–134(1998). [CrossRef]
  23. T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “The use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics,” Phys. Med. Biol. 51, N313–N322 (2006). [CrossRef]
  24. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  25. The Pierre Auger Collaboration, “The fluorescence detector of the Pierre Auger Observatory,” Nucl. Instrum. Methods Phys. Res. A 620, 227–251 (2010).
  26. CTA Consortium, “Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy,” Exp. Astron. 32, 193–316(2011).
  27. The Pierre Auger Collaboration, “A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory,” Astropart. Phys. 33, 108–129 (2010). [CrossRef]
  28. B. Keilhauer and M. Will, for the Pierre Auger Collaboration, “Description of atmospheric conditions at the Pierre Auger Observatory using meteorological measurements and models,” Eur. Phys. Plus J. 127, 96 (2012). [CrossRef]
  29. K. Louedec for the Pierre Auger Collaboration and R. Losno, “Atmospheric aerosols at the Pierre Auger Observatory and environmental implications,” Eur. Phys. J. Plus 127, 97 (2012). [CrossRef]
  30. S. BenZvi, B. M. Connolly, J. A. J. Matthews, M. Prouza, E. F. Visbal, and S. Westerhoff, “Measurement of the aerosol phase function at the Pierre Auger Observatory,” Astropart. Phys. 28, 312–320 (2007). [CrossRef]
  31. K. Louedec, for the Pierre Auger Collaboration, “Atmospheric monitoring at the Pierre Auger Observatory—Status and update,” in Proceedings of 32nd ICRC (2011), Vol. 2, pp. 63–66.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited