OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz–Mie theory

Lars Boyde, Andrew Ekpenyong, Graeme Whyte, and Jochen Guck  »View Author Affiliations


Applied Optics, Vol. 51, Issue 33, pp. 7934-7944 (2012)
http://dx.doi.org/10.1364/AO.51.007934


View Full Text Article

Enhanced HTML    Acrobat PDF (753 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present two electromagnetic frameworks to compare the surface stresses on spheroidal particles in the optical stretcher (a dual-beam laser trap that can be used to capture and deform biological cells). The first model is based on geometrical optics (GO) and limited in its applicability to particles that are much greater than the incident wavelength. The second framework is more sophisticated and hinges on the generalized Lorenz–Mie theory (GLMT). Despite the difference in complexity between both theories, the stress profiles computed with GO and GLMT are in good agreement with each other (relative errors are on the order of 1–10%). Both models predict a diminishing of the stresses for larger wavelengths and a strong increase of the stresses for shorter laser-cell distances. Results indicate that surface stresses on a spheroid with an aspect ratio of 1.2 hardly differ from the stresses on a sphere of similar size. Knowledge of the surface stresses and whether or not they redistribute during the stretching process is of crucial importance in real-time applications of the stretcher that aim to discern the viscoelastic properties of cells for purposes of cell characterization, sorting, and medical diagnostics.

© 2012 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(080.0080) Geometric optics : Geometric optics
(140.7010) Lasers and laser optics : Laser trapping
(290.4020) Scattering : Mie theory
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

History
Original Manuscript: April 2, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 16, 2012
Published: November 14, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Lars Boyde, Andrew Ekpenyong, Graeme Whyte, and Jochen Guck, "Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz–Mie theory," Appl. Opt. 51, 7934-7944 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-33-7934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Guck, R. Ananthakrishnan, H. Mahmood, T. Moon, C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001). [CrossRef]
  2. J. Guck, R. Ananthakrishnan, T. Moon, C. Cunningham, and J. Kääs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000). [CrossRef]
  3. F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Nat. Acad. Sci. 106, 15696–15701 (2009).
  4. A. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. Keyser, E. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLOS ONE 7e45237 (2012).
  5. A. Ekpenyong, C. Posey, J. Chaput, A. Burkart, M. Marquardt, T. Smith, and M. Nichols, “Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher,” Appl. Opt. 48, 6344–6354 (2009). [CrossRef]
  6. J. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J. 99, 2479–2487 (2010). [CrossRef]
  7. K. Chalut, M. Höpfler, L. Boyde, A. Martinez-Arias, and J. Guck, “Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells,” Biophys. J. (to be published).
  8. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005). [CrossRef]
  9. T. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res. 69, 1728–1732 (2009). [CrossRef]
  10. K. Chalut, A. Ekpenyong, W. Clegg, I. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. 4, 280–284 (2012). [CrossRef]
  11. K. Franze, J. Grosche, S. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007). [CrossRef]
  12. M. Gu, S. Kuriakose, and X. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15, 1369–1375 (2007). [CrossRef]
  13. W. Sun, N. Loeb, and Q. Fu, “Light scattering by coated sphere immersed in absorbing medium: a comparison between the fdtd and analytic solutions,” J. Quant. Spectrosc. Radiat. Transfer 83, 483–492 (2004). [CrossRef]
  14. L. Boyde, K. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A 26, 1814–1826 (2009). [CrossRef]
  15. F. Xu, J. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).
  16. H. Van De Hulst, Light Scattering by Small Particles (Dover, 1982).
  17. M. Cooray and I. Ciric, “Wave scattering by chiral spheroid,” J. Opt. Soc. Am. A 10, 1197–1203 (1993). [CrossRef]
  18. B. Sinha and R. MacPhie, “Electromagnetic scattering by prolate spheroids for plane waves with arbitrary polarization angle of incidence,” Radio Sci. 12, 171–184 (1977). [CrossRef]
  19. Y. Han and Z. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509(2001). [CrossRef]
  20. X. Sun, H. Wang, and H. Zhang, “Scattering of Gaussian beam by a conduction spheroidal particle with confocal dielectric coating,” J. Infrared Millimeter Terahertz Waves 31, 1100–1108 (2010).
  21. H. Zhang and Y. Han, “Scattering by a confocal multi-layer spheroidal particle illuminated by an axial Gaussian beam,” IEEE Trans. Antennas Propag. 53, 1514–1518 (2005). [CrossRef]
  22. L. Li, X. Kang, and M. Leong, Spheroidal Wave Functions in Electromagnetic Theory (Wiley, 2001).
  23. S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975).
  24. S. Asano, “Light scattering properties of spheroidal particles,” Appl. Opt. 18, 712–723 (1979). [CrossRef]
  25. L. Boyde, K. Chalut, and J. Guck, “Exact analytical expansion of an off-axis Gaussian laser beam using the translation theorems for the vector spherical harmonics,” Appl. Opt. 50, 1023–1033 (2011). [CrossRef]
  26. H. Sosa-Martínez and J. Gutíerrez-Vega, “Optical forces on a Mie spheroidal particle arbitrarily oriented in a counter-propagating trap,” J. Opt. Soc. Am. B 26, 2109–2116 (2009). [CrossRef]
  27. P. H. Moon and D. E. Spencer, Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. (Springer Verlag, 1988).
  28. C. Flammer, Spheroidal Wave Functions, 1st ed. (Stanford, 1957).
  29. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  30. Z. Wang, P. Wang, and Y. Xu, “Crucial experiment to resolve Abraham-Minkowski controversy,” Optik 122, 1994–1996 (2011). [CrossRef]
  31. A. Siegman, Lasers (University Science, 1986).
  32. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999).
  33. P. Falloon, “Theory and computation of spheroidal harmonics with general arguments,” master’s thesis (University of Western Australia, 2001).
  34. C. Rinaldi and H. Brenner, “Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress?” Phys. Rev. E 65, 036615 (2002). [CrossRef]
  35. L. Boyde, K. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary three- dimensional aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).
  36. P. Bareil, Y. Sheng, Y. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15, 16029–16034 (2007). [CrossRef]
  37. R. Ananthakrishnan, “On the structural response of eukaryotic cells,” Ph.D. dissertation (University of Texas at Austin, 2003).
  38. R. Ananthakrishnanan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006). [CrossRef]
  39. L. Boyde, A. Ekpenyong, G. Whyte, and J. Guck, “Elastic theory for the deformation of a homogeneous or layered spheroid under axisymmetric loading,” Acta Mech. (submitted).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited