OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Effects of salinity, temperature, and polarization on top of atmosphere and water leaving radiances for case 1 waters

André Hollstein and Jürgen Fischer  »View Author Affiliations


Applied Optics, Vol. 51, Issue 33, pp. 8022-8033 (2012)
http://dx.doi.org/10.1364/AO.51.008022


View Full Text Article

Enhanced HTML    Acrobat PDF (1091 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of polarization, sea water salinity, and temperature on top of atmosphere radiances and water leaving radiances (WLRs) are discussed using radiative transfer simulations for MEdium resolution imaging spectrometer (MERIS) channels from 412 to 900 nm. A coupled system of an aerosol-free atmosphere and an ocean bulk containing chlorophyll and colored dissolved organic matter (CDOM) (case 1 waters) was simulated. A simple, but realistic, bio-optical model was set up to relate chlorophyll concentration and wavelength to scattering matrices and absorption coefficients for chlorophyll and colored CDOM. The model of the optical properties of the sea water accounts for the salinity, temperature, and wavelength dependence of the relative refractive index, as well as the absorption and the bulk scattering coefficient. The results show that the relative difference of WLRs at zenith for a salinity of 5 practical salinity units (PSUs) and 35 PSU can reach values of 16% in the 412 nm channel, decreasing to 4% in the 900 nm channel. For the more realistic case of 25 PSU compared to 35 PSU, the effect is reduced to 5% for the 412 nm channel and decreasing to 2% for the 900 nm channel. The effect on radiance caused by changing sea water temperature is dominated by changes of sea water absorption and shows strong spectral features. For WLRs, a change of 10°C can cause relative changes of above 3%. The effects of neglecting polarization in the radiative transfer depends strongly on direction and wavelength, and can reach values of ±8% for the 412 nm channel. The effect is discussed for MERIS channels, viewing geometry, and chlorophyll content.

© 2012 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: May 30, 2012
Revised Manuscript: October 17, 2012
Manuscript Accepted: October 17, 2012
Published: November 20, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
André Hollstein and Jürgen Fischer, "Effects of salinity, temperature, and polarization on top of atmosphere and water leaving radiances for case 1 waters," Appl. Opt. 51, 8022-8033 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-33-8022


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. R. McClain, “A decade of satellite ocean color observations,” Ann. Rev. Marine Sci. 1, 19–42 (2009). [CrossRef]
  2. J. I. Antonov, D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas 2009, Volume 2: Salinity, S. Leviticus, ed., NOAA Atlas NESDIS 69 (U.S. Government Printing Office, 2010).
  3. F. Janssen, C. Schrum, and J. O. Backhaus, “A climatological data set of temperature and salinity for the Baltic Sea and the North Sea,” Ocean Dyn. 51, 5–245 (1999). [CrossRef]
  4. R. W. Macdonald, F. A. McLaughlin, and E. C. Carmack, “Fresh water and its sources during the SHEBA drift in the Canada Basin of the Arctic Ocean,” Deep-Sea Res. Part I 49, 1769–1785 (2002). [CrossRef]
  5. M. G. McPhee, T. P. Stanton, J. H. Morison, and D. G. Martinson, “Freshening of the upper ocean in the Arctic: is perennial sea ice disappearing?” Geophys. Res. Lett. 25, 1729–1732 (1998). [CrossRef]
  6. D. M. A. Schaap and G. Maudire, “SeaDataNet—Pan-European infrastructure for marine and ocean data management: unified access to distributed data sets,” in Geophysical Research Abstracts (EGU, 2009).
  7. SeaDataNet Regional Product Prototype, “Diva 4d analysis of sali.19752005, salinity masked using relative error threshhold 0.3,” http://gher-diva.phys.ulg.ac.be/web-vis/clim.html .
  8. D. Roemmich and J. Gilson, “The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program,” Prog. Oceanogr. 82, 81–100 (2009). [CrossRef]
  9. J.-R. Donguy and G. Meyers, “Seasonal variations of sea-surface salinity and temperature in the tropical Indian Ocean,” Deep-Sea Res. Part I 43, 117–138 (1996). [CrossRef]
  10. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas, Volume 1: Temperature, S. Leviticus, ed., NOAA Atlas NESDIS 68 (U. S. Government Printing Office, 2010).
  11. Water leaving radiances (WLRs) is defined as the upward directed radiance just above the ocean surface, but without contributions from surface reflection.
  12. D. Antoine, L. Bourg, C. Brockmann, R. Doerffer, J. Fischer, G. Moore, R. Santer, and F. Zagolski, Reference Model for MERIS Level 2 Processing Third MERIS reprocessing: Ocean Branch (ESA, ARGANS, ACRI, 2011).
  13. In the MODIS ATBD [14] for case two waters, the salinity is also assumed to be constant. However, the authors discuss that a drop in salinity, caused by melting waters in northern parts of the globe, may have caused deviations of the retrieval and in situ measurements.
  14. L. Kendall, F. Carder, R. Chen, Z. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS Ocean Science Team Algorithm Theoretical Basis Document (College of Marine Science University of South Florida, 2003).
  15. A. Hollstein, and J. Fischer, “Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique,” J. Quant. Spectrosc. Radiat. Transfer 113, 536–548 (2012). [CrossRef]
  16. F. Fell, and J. Fischer, “Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method,” J. Quant. Spectrosc. Radiat. Transfer 69, 351–388 (2001). [CrossRef]
  17. M. Rast, J. L. Bezy, and S. Bruzzi, “The ESA medium resolution imaging spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20, 1681–1702(1999). [CrossRef]
  18. U. Klein, B. Berruti, F. Borde, J. Frerick, J. Nieke, J. Stroede, and C. Mavrocordatos, “Sentinel-3 payload overview,” Proc. SPIE 7474, 747405 (2009).
  19. R. Röttgers, R. Doerfer, D. McKee, and W. Schönfeld, “Pure water spectral absorbtion, scattering, and real part of refractive index model,” Algorithm Technical Basis Document (2010).
  20. R. M. Pope, and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  21. Z. Lu, “Optical absorption of pure water in the blue and ultraviolet,” Ph.D. dissertation (Texas A&M University, 2006).
  22. L. Wang, “Measuring optical absorption coefficient of pure water in UV using the integrating cavity absorption meter,” Ph.D. dissertation (Texas A&M University, 2008).
  23. D. J. Segelstein, “The complex refractive index of water,” Ph.D. dissertation (Department of Physics, University of Missouri Kansas City, 1981).
  24. D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989). [CrossRef]
  25. J.-J. Max and C. Chapados, “Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0  cm−1,” J. Chem. Phys. 131, 184505 (2009). [CrossRef]
  26. R. Röttgers, Technical note, unpublished data (2010).
  27. M. Smoluchowski, “Molecular kinetic theory of opalescence of gases in their critical region and of some allied phenomenon,” Ann. Phys. 330, 205–226 (1908).
  28. A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes,” Ann. Phys. 14, 368–391 (1910). [CrossRef]
  29. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  30. Lord Rayleigh, “On the scattering of light by a cloud of similar small particles of any shape and oriented at random” Phil. Mag. 35, 373 (1918). [CrossRef]
  31. S. Chandrasekhar, Radiative Transfer (Courier Dover, 1960).
  32. X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express 17, 1671–1678 (2009). [CrossRef]
  33. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.
  34. M. Sancer, “Shadow-corrected electromagnetic scattering from a randomly rough surface,” IEEE Trans. Antennas Propag. 17, 577–585 (1969). [CrossRef]
  35. T. Nakajima and M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983). [CrossRef]
  36. G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere- ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989). [CrossRef]
  37. These are closely coupled by the Kramers–Kronig relations; an application to water ice can be found in [38].
  38. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef]
  39. T. J. Petzold, “Volume scattering functions for selected ocean waters” (Scripps Institution of Oceanography Visibility Laboratory, La Jolla, California, 1972).
  40. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984). [CrossRef]
  41. E. S. Fry and K. J. Voss, “Measurement of the Mueller matrix for phytoplankton,” Limnol. Oceanogr. 30, 1322–1326 (1985). [CrossRef]
  42. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998). [CrossRef]
  43. A. Gogoi, A. K. Buragohain, A. Choudhury, and G. A. Ahmed, “Laboratory measurements of light scattering by tropical fresh water diatoms,” J. Quant. Spectrosc. Radiat. Transfer 110, 1566–1578 (2009). [CrossRef]
  44. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002). [CrossRef]
  45. J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006). [CrossRef]
  46. M. Chami, R. Santer, and E. Dilligeard, “Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing,” Appl. Opt. 40, 2398–2416 (2001). [CrossRef]
  47. A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983). [CrossRef]
  48. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. Part A 28, 1375–1393 (1981). [CrossRef]
  49. Assuming an evanescent wave E⃗(x⃗)=E⃗0ei(ω*t+k⃗x⃗) that propagates through the particle, where x⃗ is the position vector and k⃗=ωc(nr+i·ni) is the complex wave vector that depends on the speed of light c, its angular frequency ω, and the complex refractive index n=nr+i·ni of the particle. The intensity of the field inside the particle is then given by the scalar product E⃗E⃗* and Eq. (4) can be obtained by comparing the result with Beer’s law: E⃗E⃗*=E02e−2nixω/c+i(2nrxω/c−2tω)≔E02e−achlxei(2nrxω/c−2tω).
  50. C. B. Markwardt, “Non-linear least squares fitting in IDL with MPFIT,” in Astronomical Data Analysis Software and Systems XVIII, D. Bohlender, P. Dowler, and D. Durand, eds., Vol. 411 of ASP Conference Series (Astronomical Society of the Pacific, 2008), pp. 251–254.
  51. T. Zhang, F. Fell, Z.-S. Liu, R. Preusker, J. Fischer, and M.-X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in Case I waters,” J. Geophys. Res. 108, 3286 (2003). [CrossRef]
  52. Salinity, temperature, and chlorophyll concentration are always used for the ocean body.
  53. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, Optical Properties of the Atmosphere, 3rd. ed. (Air Force Cambridge Research Labs, 1972).
  54. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckov, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  55. R. Bennartz and J. Fischer, “A modified k-distribution approach applied to narrow band water vapour and oxygen absorption estimates in the near infrared,” J. Quant. Spectrosc. Radiat. Transfer 66, 539–553 (2000). [CrossRef]
  56. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  57. G. W. Kattawar, G. N. Plass, and S. J. Hitzfelder, “Multiple scattered radiation emerging from rayleigh and continental haze layers. 1: radiance, polarization, and neutral points,” Appl. Opt. 15, 632–647 (1976). [CrossRef]
  58. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988). [CrossRef]
  59. G. W. Kattawar and C. N. Adams, “Errors induced when polarization is neglected in radiance calculations for an atmosphere-ocean,” Proc. SPIE 1749, 2–22 (1992). [CrossRef]
  60. P.-W. Zhai, Y. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transfer 111, 1025–1040 (2010). [CrossRef]
  61. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999). [CrossRef]
  62. The mean absolute polarization error has been calculated using 〈p〉=1/(4π)∫02πdφ∫0μdϕ|1−I(φ,μ)/I⃗(φ,μ)|sin(μ).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited