OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Comparison of the optoacoustic signal generation efficiency of different nanoparticular contrast agents

Wolfgang Bost, Robert Lemor, and Marc Fournelle  »View Author Affiliations


Applied Optics, Vol. 51, Issue 33, pp. 8041-8046 (2012)
http://dx.doi.org/10.1364/AO.51.008041


View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optoacoustic imaging represents a new modality that allows noninvasive in vivo molecular imaging with optical contrast and acoustical resolution. Whereas structural or functional imaging applications such as imaging of vasculature do not require contrast enhancing agents, nanoprobes with defined biochemical binding behavior are needed for molecular imaging tasks. Since the contrast of this modality is based on the local optical absorption coefficient, all particle or molecule types that show significant absorption cross sections in the spectral range of the laser wavelength used for signal generation are suitable contrast agents. Currently, several particle types such as gold nanospheres, nanoshells, nanorods, or polymer particles are used as optoacoustic contrast agents. These particles have specific advantages with respect to their absorption properties, or in terms of biologically relevant features (biodegradability, binding to molecular markers). In the present study, a comparative analysis of the signal generation efficiency of gold nanorods, polymeric particles, and magnetite particles using a 1064 nm Nd:YAG laser for signal generation is described.

© 2012 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Imaging Systems

History
Original Manuscript: August 24, 2012
Revised Manuscript: October 22, 2012
Manuscript Accepted: October 23, 2012
Published: November 20, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Wolfgang Bost, Robert Lemor, and Marc Fournelle, "Comparison of the optoacoustic signal generation efficiency of different nanoparticular contrast agents," Appl. Opt. 51, 8041-8046 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-33-8041


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006). [CrossRef]
  2. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007). [CrossRef]
  3. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16, 3362–3367 (2008). [CrossRef]
  4. M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012). [CrossRef]
  5. D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011). [CrossRef]
  6. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008). [CrossRef]
  7. G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007). [CrossRef]
  8. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004). [CrossRef]
  9. M. L. Li, J. Chunjay Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14, 010507 (2009). [CrossRef]
  10. P. C. Li, C. R. C. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16, 18605–18615 (2008). [CrossRef]
  11. M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009). [CrossRef]
  12. M. P. Mienkina, C. S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist) as a photoacoustic contrast agent,” Biomed. Tech. 54, 83–88 (2009). [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  14. R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010). [CrossRef]
  15. A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010). [CrossRef]
  16. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006). [CrossRef]
  17. Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011). [CrossRef]
  18. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543–2557 (2005). [CrossRef]
  19. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in-vivo non-invasive cancer imaging in the human breast using nearinfrared photoacoustics,” Opt. Express 15, 12277–12285 (2007). [CrossRef]
  20. J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012). [CrossRef]
  21. T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, and H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surfaces B: Biointerfaces 71, 325–330 (2009). [CrossRef]
  22. H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005). [CrossRef]
  23. H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007). [CrossRef]
  24. W. Bost, Y. Kohl, F. Stracke, M. Fournelle, and R. Lemor, “High resolution optoacoustic detection of nanoparticles on living cells,” in Proceedings of 2009 IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 120–123.
  25. E. C. Weiss, P. Anastasiadis, G. Pilarczyk, R. M. Lemor, and P. V. Zinin, “Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 54, 2257–2271 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited