Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Time-domain geometrical localization of point-like fluorescence inclusions in turbid media with early photon arrival times

Not Accessible

Your library or personal account may give you access

Abstract

We introduce a novel approach for localizing a plurality of discrete point-like fluorescent inclusions embedded in a thick turbid medium using time-domain measurements. The approach uses early photon information contained in measured time-of-flight distributions originating from fluorescence emission. Fluorescence time point-spread functions (FTPSFs) are acquired with ultrafast time-correlated single photon counting after short pulse laser excitation. Early photon arrival times are extracted from the FTPSFs obtained from several source-detector positions. Each source-detector measurement allows defining a geometrical locus where an inclusion is to be found. These loci take the form of ovals in 2D or ovoids in 3D. From these loci a map can be built, with the maxima thereof corresponding to positions of inclusions. This geometrical approach is supported by Monte Carlo simulations performed for biological tissue-like media with embedded fluorescent inclusions. To validate the approach, several experiments are conducted with a homogeneous phantom mimicking tissue optical properties. In the experiments, inclusions filled with indocyanine green are embedded in the phantom and the fluorescence response to a short pulse of excitation laser is recorded. With our approach, several inclusions can be localized with low millimeter positional error. Our results support the approach as an accurate, efficient, and fast method for localizing fluorescent inclusions embedded in highly turbid media mimicking biological tissues. Further Monte Carlo simulations on a realistic mouse model show the feasibility of the technique for small animal imaging.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Real time optical method for localization of inclusions embedded in turbid media

Anabela Da Silva, Nadia Djaker, Nicolas Ducros, Jean-Marc Dinten, and Philippe Rizo
Opt. Express 18(8) 7753-7762 (2010)

Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium

David Hall, Guobin Ma, Frédéric Lesage, and Yong Wang
Opt. Lett. 29(19) 2258-2260 (2004)

Depth resolution and multiexponential lifetime analyses of reflectance-based time-domain fluorescence data

Kenneth M. Tichauer, Mark Migueis, Frederic Leblond, Jonathan T. Elliott, Mamadou Diop, Keith St. Lawrence, and Ting-Yim Lee
Appl. Opt. 50(21) 3962-3972 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (20)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved