Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 12,
  • pp. 1283-1289
  • (2007)

A Chromatographic Approach for Fluorescence Reduction in Liquid Raman Analysis

Not Accessible

Your library or personal account may give you access

Abstract

In this study a chromatographic approach for fluorescence reduction in liquid Raman analysis has been evaluated. The idea behind the approach is to apply a chromatographic separation step prior to Raman analysis in order to separate fluorescing compounds from other components of interest, thus facilitating better quantitative and qualitative analysis of the latter components. A real-time liquid-core Raman waveguide detector designed for chromatographic applications was used in the study, thus providing real-time chemical pretreatment of liquid samples for Raman analysis. Twenty aqueous mixtures of additives frequently found in beverages were analyzed, and for comparative purposes the mixtures were also analyzed in the Raman waveguide detector without chromatographic separation and with a conventional immersion probe. Both qualitatively and quantitatively satisfying results were obtained using the chromatographic Raman approach, and the technique provided possibilities for quantitative and qualitative assessments superior to the two other instrumental setups. The technique may provide additional benefits through sensitivity enhancements, and the approach is simple, inexpensive, and easy to implement in the average applied Raman laboratory. The analysis of various chemical systems and factors such as system stability over time need further evaluation in order to confirm the general applicability of the approach.

PDF Article
More Like This
Reduction of Fluorescence Background in Raman Spectra by the Pulsed Raman Technique*

Perry Pappas Yaney
J. Opt. Soc. Am. 62(11) 1297-1303 (1972)

Fluorescence modeling for optimized-binary compressive detection Raman spectroscopy

Owen G. Rehrauer, Bharat R. Mankani, Gregery T. Buzzard, Bradley J. Lucier, and Dor Ben-Amotz
Opt. Express 23(18) 23935-23951 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.