OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

An In Vivo Confocal Raman Study of the Delivery of Trans Retinol to the Skin

Paul D. A. Pudney, Mickaël Mélot, Peter J. Caspers, Andre Van Der Pol, and Gerwin J. Puppels

Applied Spectroscopy, Vol. 61, Issue 8, pp. 804-811 (2007)

View Full Text Article

Acrobat PDF (447 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The purpose of this study is to monitor in vivo the delivery of trans-retinol into human skin. Delivery to real systems, such as skin, can be extremely difficult to execute and is problematic to confirm and measure. So far, methods for studying the delivery of compounds through the skin are mostly ex vivo and so inherently influence the skin and may not translate directly to the in vivo situation. Raman spectroscopy is uniquely placed to be able to measure biological processes in vivo, and this paper shows that the trans-retinol penetration into the skin can successfully be measured in vivo using this technique. This study measured the volar forearm of volunteers treated with 0.3% trans-retinol in propylene glycol (PG)/ethanol and 0.3% trans-retinol in caprylic/capric acid triglyceride (MYRITOL®318), an oil found in skin creams. Solutions were applied and then confocal Raman depth profiles were obtained of the stratum corneum (SC) and into the viable epidermis (VE) up to 10 hours after treatment. Remarkable differences between a penetrating and a nonpenetrating solution can clearly be observed. Treating with trans-retinol in PG/ethanol results in trans-retinol penetrating through the SC and into the VE. Its penetration was also observed to be highly correlated with the depth of penetration of the PG, which is well known as an efficient penetration enhancer. In contrast, while treating with trans-retinol in MYRITOL®318, trans-retinol hardly penetrates at all. For the first time, the penetration of trans-retinol has been monitored directly after application of solutions, in vivo without skin excision. Here, the effect of two different solutions on the delivery of trans-retinol into the skin was measured very effectively in vivo by Raman spectroscopy.

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Paul D. A. Pudney, Mickaël Mélot, Peter J. Caspers, Andre Van Der Pol, and Gerwin J. Puppels, "An In Vivo Confocal Raman Study of the Delivery of Trans Retinol to the Skin," Appl. Spectrosc. 61, 804-811 (2007)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited