Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 63,
  • Issue 7,
  • pp. 753-758
  • (2009)

Near-Infrared Spectroscopic Investigation of the Hydrothermal Degradation Mechanism of Wood as an Analogue of Archaeological Wood. Part II: Hardwood

Not Accessible

Your library or personal account may give you access

Abstract

Near-infrared (NIR) spectroscopy and chemometrics were applied to analyze the degradation mechanism of hardwood following hydrothermal treatment. NIR spectra, chemical composition, oven-dried density, equilibrium moisture content, compressive Young's modulus parallel to grain, and cellulose crystallinity of artificially degraded beech as an analogue of archaeological wood were systematically measured. Partial least squares (PLS) regression analysis was employed to predict compressive Young's modulus using NIR spectra and various properties as independent variables. Results are also compared with previous data obtained from similar treatment of softwood (Hinoki cypress). The increase in cellulose crystallinity of hardwood during the initial stage of hydrothermal treatment (up to 5 hours) was correlated with an improvement in the mechanical properties of wood. Young's modulus for both hardwood and softwood showed a gradual decrease over five hours of hydrothermal treatment, which is proposed to be due to the degradation of polysaccharide.

PDF Article
More Like This
Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy

Ryunosuke Kitamura, Tetsuya Inagaki, and Satoru Tsuchikawa
Opt. Express 24(4) 3999-4009 (2016)

Optical properties of drying wood studied by time-resolved near-infrared spectroscopy

Keiji Konagaya, Tetsuya Inagaki, Ryunosuke Kitamura, and Satoru Tsuchikawa
Opt. Express 24(9) 9561-9573 (2016)

Spectroscopic studies of wood-drying processes

Mats Andersson, Linda Persson, Mikael Sjöholm, and Sune Svanberg
Opt. Express 14(8) 3641-3653 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.