Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 11,
  • pp. 1209-1219
  • (2010)

A Matrix-Based Two-Dimensional Regularization Algorithm for Signal-to-Noise Ratio Enhancement of Multidimensional Spectral Data

Not Accessible

Your library or personal account may give you access

Abstract

We present a new spectral image processing algorithm, the “matrix maximum entropy method” (MxMEM), which offers efficient signal-to-noise ratio (SNR) enhancement of multidimensional spectral data. MxMEM is based upon two previous regularization methods that employ the maximum entropy concept. The first is a one-dimensional (1D) algorithm, which smoothes individual vectors, called the two-point maximum entropy method (TPMEM). The second is a two-dimensional (2D) form called 2D TPMEM, that smoothes images but processes them one vector at a time. MxMEM is a truly two dimensional image processing algorithm in that its “smoothing engine” performs two-dimensional processing in every iteration. We demonstrate that this matrix-based construction makes more effective use of two-dimensionally embedded information and thus confers significant advantages over other regularization approaches. In addition, we utilize the concept that individual related Raman spectra can be combined in a matrix to form an artificial Raman “image”. We show that, when processed as an image, superior SNR enhancement is achieved compared to processing the same data by TPMEM one spectrum at a time.

PDF Article
More Like This
Signal-to-noise ratio enhancement of a Hadamard transform spectrometer using a two-dimensional slit-array

Mingbo Chi, Yihui Wu, Fang Qian, Peng Hao, Wenchao Zhou, and Yongshun Liu
Appl. Opt. 56(25) 7188-7193 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved