Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 11,
  • pp. 1251-1258
  • (2010)

Classification of Jet Fuel Properties by Near-Infrared Spectroscopy Using Fuzzy Rule-Building Expert Systems and Support Vector Machines

Not Accessible

Your library or personal account may give you access

Abstract

Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

PDF Article
More Like This
Feature weighting algorithms for classification of hyperspectral images using a support vector machine

Bin Qi, Chunhui Zhao, and Guisheng Yin
Appl. Opt. 53(13) 2839-2846 (2014)

Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines

Long Liang, Tianlong Zhang, Kang Wang, Hongsheng Tang, Xiaofeng Yang, Xiaoqin Zhu, Yixiang Duan, and Hua Li
Appl. Opt. 53(4) 544-552 (2014)

Detection of captan residues in apple juice using fluorescence spectroscopy combined with a genetic algorithm and support vector machines

Rendong Ji, Zhezhen Jiang, Xiaoyan Wang, Yue Han, Haiyi Bian, Yudong Yang, Liyun Zhuang, and Yulin Zhang
Appl. Opt. 61(12) 3455-3462 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved