OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Optimization of Native Fluorescence Detection of Proteins Using a Pulsed Nanolaser Excitation Source

Matthew S. Heywood and Paul B. Farnsworth

Applied Spectroscopy, Vol. 64, Issue 11, pp. 1283-1288 (2010)

View Full Text Article

Acrobat PDF (398 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We present a mathematical description of the signal-to-noise ratio (S/N) in a fluorescence-based protein detector for capillary electrophoresis that uses a pulsed ultraviolet (UV) laser at 266 nm as an excitation source. The model accounts for photobleaching, detector volume, laser repetition rate, and analyte flow rate. We have experimentally characterized such a system, and we present a comparison of the experimental data with the predictions of the model. Using the model, the system was optimized for test analytes tryptophan, tyrosine, bovine serum albumin (BSA), and conalbumin, producing detection limits (3σ) of 0.67 nM, 5.7 nM, 0.9 nM, and 1.5 nM, respectively. Based on the photobleaching data, a photobleaching cross-section of 1.4 × 10<sup>–18</sup>cm<sup>2</sup> at 266 nm was calculated for tryptophan.

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Matthew S. Heywood and Paul B. Farnsworth, "Optimization of Native Fluorescence Detection of Proteins Using a Pulsed Nanolaser Excitation Source," Appl. Spectrosc. 64, 1283-1288 (2010)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited