Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 7,
  • pp. 708-713
  • (2010)

Monte Carlo Simulation of Fluorescence Spectra of Normal and Dysplastic Cervical Tissues for Optimizing Excitation/Receiving Arrangements

Not Accessible

Your library or personal account may give you access

Abstract

Recent studies have demonstrated that the autofluorescence technique is a very promising tool for early-stage cancer diagnosis in various tissues. Many researchers have applied the autofluorescence technique through fiber-optic cables to excite tissues and collect the fluorescent emission signal from the tissues for discrimination analysis. In this study, we developed a Monte Carlo–light-induced autofluorescence (MCS LIAF) simulation model to optimize the oblique angle in the excitation optical fiber and the spatial arrangements in the receiving optical fiber. Our aim was to discriminate cervical tissues at different dysplastic stages. The model combined the structure of multi-layered tissues, tissue optical scattering and absorption parameters, tissue fluorophore concentration, the characteristic fluorescent spectrum of fluorophores, and the excitation and receiving arrangement of the optical fibers. The results show that the optimal oblique angle of the excitation optical fiber is between 0° and 45° and that the optimal receiving optical fiber is positioned 200 μm away from the origin. We also observed that changing the excitation angle is very useful in differentiating normal from cervical intraepithelial neoplasia (CIN) I or CIN II tissues. Also, using the fluorescence peak ratio of NADH/collagen can help discriminate CIN III from normal tissues and CIN I/II tissues.

PDF Article
More Like This
Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue

Yicong Wu, Peng Xi, Jianan Y. Qu, Tak-Hong Cheung, and Mei-Yung Yu
Opt. Express 13(2) 382-388 (2005)

Mueller decomposition images for cervical tissue: Potential for discriminating normal and dysplastic states

Prashant Shukla and Asima Pradhan
Opt. Express 17(3) 1600-1609 (2009)

Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues

Johannes Swartling, Antonio Pifferi, Annika M. K. Enejder, and Stefan Andersson-Engels
J. Opt. Soc. Am. A 20(4) 714-727 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved