OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Raman and Surface-Enhanced Raman Detection of Domoic Acid and Saxitoxin

Tammy Y. Olson, Adam M. Schwartzberg, Jinny L. Liu, and Jin Z. Zhang

Applied Spectroscopy, Vol. 65, Issue 2, pp. 159-164 (2011)

View Full Text Article

Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The use of surface-enhanced Raman scattering (SERS) for detecting domoic acid and saxitoxin was demonstrated and vibrational modes have been assigned based on the current literature. Silver nanoparticles were used to obtain the SERS spectra of domoic acid for the first time, which displayed enhancement of nearly 70 times the normal Raman spectra. Unique features in the SERS spectrum of domoic acid allowed the binding effect and orientation of the domoic acid to the metal surface to be analyzed. Saxitoxin exhibited an undetectable normal Raman signal but revealed very prominent SERS peaks. SERS peak positions closely matched published experimental and theoretical values, but with different peak ratios, indicating variance in molecule–nanoparticle interaction depending on the SERS substrate utilized. SERS is demonstrated as a powerful analytical tool for detecting toxins at low concentration with molecular specificity and shows immense potential for fast and remote sensing of toxins in various applications.

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Tammy Y. Olson, Adam M. Schwartzberg, Jinny L. Liu, and Jin Z. Zhang, "Raman and Surface-Enhanced Raman Detection of Domoic Acid and Saxitoxin," Appl. Spectrosc. 65, 159-164 (2011)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited