Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 65,
  • Issue 8,
  • pp. 931-938
  • (2011)

In Situ Determination of Growing Stages and Harvest Time of Tomato (Lycopersicon esculentum ) Fruits Using Fiber-Optic Visible–Near-Infrared (Vis-NIR) Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Nondestructive in situ measurement of tomato fruits is essential to determine growing stages and to assist in automatic picking of fruits. This study evaluates the applicability of visible and near-infrared (Vis-NIR) spectroscopy for in situ determination of growing stages and harvest time of three cultivars of tomato fruits. A mobile fiber-type AgroSpec Vis-NIR spectrophotometer (Tec5 Co., Germany) with a spectral range of 350–2200 nm was used to measure tomato spectra in reflection mode. A new growing stage (GS) index defined as the ratio of the current growing age in days to the on-vine duration before harvest in days was proposed. After dividing spectra into a calibration set (70%) and an independent prediction set (30%), spectra in the calibration set were subjected to a partial least squares regression (PLSR) with leave-one-out cross-validation to establish calibration models relating GS to the spectra of tomato fruits. Separate models were developed for each tomato cultivar and compared with a general model that used combined spectra of all three cultivars. The results show that PLSR based on the new GS is successful and robust in predicting the growing stages and harvest time of tomato fruits. Validation of calibration models on the independent prediction set indicates that successful prediction of GS can be achieved using the three models developed separately for each cultivar with a coefficient of determination (<i>R</i><sup>2</sup>) of 0.91–0.92, root mean square error of prediction (RMSEP) of 0.081–0.097, and residual prediction deviation (RPD) of 3.29–3.70. General calibration using the combined spectra produces good prediction performance, although less accurate than that for the three individual cultivar models. The analysis of regression coefficient plots resulting from PLSR analysis indicates consistent assignment of important wavelengths for individual cultivar spectra and combined spectra. It is concluded that the Vis-NIR PLSR based on GS index can be adopted successfully for in situ determination of growing stages and harvest time of on-vine tomato fruits, which allows for automatic picking of fruits by a horticultural robot.

PDF Article
More Like This
Nondestructive nitrogen content estimation in tomato plant leaves by Vis-NIR hyperspectral imaging and regression data models

Razieh Pourdarbani, Sajad Sabzi, Mohammad H. Rohban, Ginés García-Mateos, and Juan I. Arribas
Appl. Opt. 60(30) 9560-9569 (2021)

Near Infrared Reflectance of Colored Fruits

Peter J. H. Sharpe and H. N. Barber
Appl. Opt. 11(12) 2902-2906 (1972)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved