OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Automated Classification and Visualization of Healthy and Diseased Hard Dental Tissues by Near-Infrared Hyperspectral Imaging

Peter Usenik, Miran Bürmen, Aleš Fidler, Franjo Pernuš, and Boštjan Likar

Applied Spectroscopy, Vol. 66, Issue 9, pp. 1067-1074 (2012)


View Full Text Article

Acrobat PDF (1189 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel, resulting in subclinical lesions, which are difficult to diagnose. If detected early enough, such demineralization can be arrested and reversed by noninvasive means through well-established preventive measures, such as fluoride therapy, anti-bacterial therapy, or low intensity laser irradiation. Near-infrared (NIR) hyperspectral imaging is a promising new technique for early detection of dental caries based on distinct spectral features of healthy and diseased dental tissues. In this study, we apply NIR hyperspectral imaging to classify and visualize healthy and diseased dental tissues including enamel, dentin, calculus, enamel caries, and dentin caries. For this purpose, a standardized teeth database was constructed consisting of 12 extracted human teeth with different degrees of caries lesions imaged by an NIR hyperspectral system, X-ray, and digital color camera. The color and X-ray images of teeth were presented to a clinician expert for localization of the dental tissues and classification of pathological changes, thereby obtaining the gold standard. Principal component analysis (PCA) was used for multivariate local modeling of healthy and diseased dental tissues. Finally, the dental tissues were classified by employing multiple discriminant analysis. Good agreement was observed between the resulting cross-validated classification and the gold standard with the classification sensitivity and specificity exceeding 79.8% and 93.8%, respectively. This study clearly shows that the proposed automated classification and visualization method based on NIR hyperspectral imaging has considerable diagnostic potential.

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Peter Usenik, Miran Bürmen, Aleš Fidler, Franjo Pernuš, and Boštjan Likar, "Automated Classification and Visualization of Healthy and Diseased Hard Dental Tissues by Near-Infrared Hyperspectral Imaging," Appl. Spectrosc. 66, 1067-1074 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=as-66-9-1067


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited