OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

Bimodal spatial distribution of macular pigment: evidence of a gender relationship

François C. Delori, Douglas G. Goger, Claudia Keilhauer, Paola Salvetti, and Giovanni Staurenghi  »View Author Affiliations

JOSA A, Vol. 23, Issue 3, pp. 521-538 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1601 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spatial distribution of the optical density of the human macular pigment measured by two-wavelength autofluorescence imaging exhibits in over half of the subjects an annulus of higher density superimposed on a central exponential-like distribution. This annulus is located at about 0.7° from the fovea. Women have broader distributions than men, and they are more likely to exhibit this bimodal distribution. Maxwell’s spot reported by subjects matches the measured distribution of their pigment. Evidence that the shape of the foveal depression may be gender related leads us to hypothesize that differences in macular pigment distribution are related to anatomical differences in the shape of the foveal depression.

© 2006 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: June 10, 2005
Manuscript Accepted: August 4, 2005

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

François C. Delori, Douglas G. Goger, Claudia Keilhauer, Paola Salvetti, and Giovanni Staurenghi, "Bimodal spatial distribution of macular pigment: evidence of a gender relationship," J. Opt. Soc. Am. A 23, 521-538 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Snodderly, J. D. Auran, and F. C. Delori, 'The macular pigment. II. Spatial distribution in primate retinas,' Invest. Ophthalmol. Visual Sci. 25, 674-684 (1984).
  2. G. J. Handelman, E. A. Dratz, C. C. Reay, and F. J. G. M. van Kuijk, 'Carotenoids in the human macula and whole retina,' Invest. Ophthalmol. Visual Sci. 29, 850-855 (1988).
  3. D. M. Snodderly, 'Evidence for protection against age-related macular degeneration by carotenoids and antioxident vitamins,' Am. J. Clin. Nutr. 62, 1448S-1461S (1995). [PubMed]
  4. S. Beatty, M. Boulton, D. Henson, H. H. Koh, and I. J. Murray, 'Macular pigment and age related macular degeneration,' Br. J. Ophthamol. 83, 867-877 (1999). [CrossRef]
  5. J. T. Landrum and R. A. Bone, 'Lutein, zeaxanthin, and the macular pigment,' Arch. Biochem. Biophys. 385, 28-40 (2001). [CrossRef] [PubMed]
  6. L. R. Thomson, Y. Toyoda, A. Langner, F. C. Delori, K. M. Garnett, N. Craft, C. R. Nichols, K. M. Cheng, and C. K. Dorey, 'Elevated retinal zeaxanthin and prevention of light-induced photoreceptor cell death in quail,' Invest. Ophthalmol. Visual Sci. 43, 3538-3549 (2002).
  7. L. R. Thomson, Y. Toyoda, F. C. Delori, K. M. Garnett, Z. Y. Wong, C. R. Nichols, K. M. Cheng, N. E. Craft, and C. K. Dorey, 'Long term dietary supplementation with zeaxanthin reduces photoreceptor death in light-damaged Japanese quail,' Exp. Eye Res. 75, 529-542 (2002). [CrossRef] [PubMed]
  8. H. Leibowitz, D. E. Krueger, L. R. Maunder, R. C. Milton, M. M. Kini, H. A. Kahn, R. J. Nickerson, J. Pool, T. Colton, J. P. Ganley, J. I. Loewenstein, and T. R. Dawber, 'The Framingham eye study monograph. An ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975,' Surv. Ophthalmol. 24, 335-610 (1980). [PubMed]
  9. J. M. Seddon, U. A. Ajani, R. D. Sperduto, R. Hiller, N. Blair, T. C. Burton, M. D. Farber, E. S. Gragoudas, J. Haller, D. T. Miller, L. A. Yannuzzi, and W. Willett, 'Dietary carotenoids, vitamins A, C, and E and advanced age-related macular degeneration,' J. Am. Med. Assoc. 272, 1413-1420 (1994). [CrossRef]
  10. J. M. Seddon and C. H. Hennekens, 'Vitamins, minerals, and macular degeneration,' Arch. Ophthalmol. (Chicago) 112, 176-179 (1994).
  11. C. R. Gale, N. F. Hall, D. I. Phillips, and C. N. Martyn, 'Lutein and zeaxanthin status and risk of age-related macular degeneration,' Invest. Ophthalmol. Visual Sci. 44, 2461-2465 (2003). [CrossRef]
  12. B. R. Hammond, Jr., E. J. Johnson, R. M. Russell, N. I. Krinsky, K. J. Yeum, R. B. Edwards, and D. M. Snodderly, 'Dietary modification of human macular pigment density,' Invest. Ophthalmol. Visual Sci. 38, 1795-1801 (1997).
  13. J. T. Landrum, R. A. Bone, H. Joa, M. D. Kilburn, L. L. Moore, and K. E. Sprague, 'One year study of the macular pigment: the effect of 140 days of a lutein supplement,' Exp. Eye Res. 65, 57-62 (1997). [CrossRef] [PubMed]
  14. B. R. Hammond, Jr., B. R. Wooten, and D. M. Snodderly, 'Individual variations in the spatial profile of human macular pigment,' J. Opt. Soc. Am. A 14, 1187-1196 (1997). [CrossRef]
  15. B. R. Wooten, B. R. Hammond, Jr., R. I. Land, and D. M. Snodderly, 'A practical method for measuring macular pigment optical density,' Invest. Ophthalmol. Visual Sci. 40, 2481-2489 (1999).
  16. D. M. Snodderly, J. A. Mares, B. R. Wooten, L. Oxton, M. Gruber, and T. Ficek, 'Macular pigment measurement by heterochromatic flicker photometry in older subjects: the carotenoids and age-related eye disease study,' Invest. Ophthalmol. Visual Sci. 45, 531-538 (2004). [CrossRef]
  17. J. D. Moreland, 'Macular pigment assessment by motion photometry,' Arch. Biochem. Biophys. 430, 143-148 (2004). [CrossRef] [PubMed]
  18. P. E. Kilbride, K. R. Alexander, M. Fishman, and G. A. Fishman, 'Human macular pigment assessed by imaging fundus reflectometry,' Vision Res. 29, 663-674 (1989). [CrossRef] [PubMed]
  19. A. E. Elsner, S. A. Burns, E. Beausencourt, and J. J. Weiter, 'Foveal cone photopigment distribution: small alterations associated with macular pigment distribution,' Invest. Ophthalmol. Visual Sci. 39, 2394-2404 (1998).
  20. S. F. Chen, Y. Chang, and J. C. Wu, 'The spatial distribution of macular pigment in humans,' Curr. Eye Res. 23, 422-434 (2001). [CrossRef]
  21. T. T. Berendschot, J. J. Willemse-Assink, M. Bastiaanse, P. T. De Jong, and D. van Norren, 'Macular pigment and melanin in age-related maculopathy in a general population,' Invest. Ophthalmol. Visual Sci. 43, 1928-1932 (2002).
  22. W. Gellermann, I. V. Ermakov, M. R. Ermakova, R. W. McClane, D. Y. Zhao, and P. S. Bernstein, 'In vivo resonant Raman measurement of macular carotenoid pigments in the young and the aging human retina,' J. Opt. Soc. Am. A 19, 1172-1186 (2002). [CrossRef]
  23. W. Gellermann and P. S. Bernstein, 'Noninvasive detection of macular pigments in the human eye,' J. Biomed. Opt. 9, 75-85 (2004). [CrossRef] [PubMed]
  24. F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, and S. A. Burns, 'Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry,' J. Opt. Soc. Am. A 18, 1212-1230 (2001). [CrossRef]
  25. F. C. Delori, 'Autofluorescence method to measure macular pigment optical densities fluorometry and autofluorescence imaging,' Arch. Biochem. Biophys. 430, 156-162 (2004). [CrossRef] [PubMed]
  26. H. Wustemeyer, C. Jahn, A. Nestler, T. Barth, and S. Wolf, 'A new instrument for the quantification of macular pigment density: first results in patients with AMD and healthy subjects,' Graefe's Arch. Clin. Exp. Ophthalmol. 240, 666-671 (2002). [CrossRef]
  27. H. Wustemeyer, A. Moessner, C. Jahn, and S. Wolf, 'Macular pigment density in healthy subjects quantified with a modified confocal scanning laser ophthalmoscope,' Graefe's Arch. Clin. Exp. Ophthalmol. 241, 647-651 (2003). [CrossRef]
  28. F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, 'In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,' Invest. Ophthalmol. Visual Sci. 36, 718-729 (1995).
  29. F. C. Delori, D. G. Goger, and C. K. Dorey, 'Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects,' Invest. Ophthalmol. Visual Sci. 42, 1855-1866 (2001).
  30. M. Trieschmann, G. Spital, A. Lommatzsch, E. Van Kuijk, F. Fitzke, A. C. Bird, and D. Pauleikhoff, 'Macular pigment: quantitative analysis on autofluorescence images,' Graefe's Arch. Clin. Exp. Ophthalmol. 241, 1006-1012 (2003). [CrossRef]
  31. G. Staurenghi, C. Keilhauer, F. Viola, P. Salvetti, D. Goger, and F. Delori, 'Variability in macular pigment distribution evaluated by autofluorescence imaging,' Invest. Ophthalmol. Visual Sci. 44, 5118 (2003).
  32. F. Delori, D. Goger, P. Salvetti, C. Keilhauer, and G. Staurenghi, 'Spatial distribution of macular pigment in normal subjects,' Invest. Ophthalmol. Visual Sci. 45, 1288 (2004).
  33. Most older subjects in this study were recruited from the Harvard Cooperative Program on Aging (Roslindale, Mass.), an organization devoted to good health through research and education.
  34. W. A. Rushton and G. H. Henri, 'Bleaching and regeneration of cone pigments in man,' Vision Res. 8, 617-631 (1968). [CrossRef] [PubMed]
  35. W. H. A. Rushton, 'Visual pigments in man,' in Handbook of Sensory Physiology, H.J.A.Dartnall, ed. (Springer-Verlag, 1972), pp. 364-394. [CrossRef]
  36. A. T. Liem, J. E. E. Keunen, D. van Norren, and J. van der Kraats, 'Rod densitometry in the aging human eye,' Invest. Ophthalmol. Visual Sci. 32, 31-37 (1991).
  37. ANSI, American National Standard for Safe Use of Lasers (ANSI 136.1), ANSI 136.1-2000 (The Laser Institute of America, 2000).
  38. R. A. Bone, J. T. Landrum, and A. Cains, 'Optical density spectra of the macular pigment in vivo and in vitro,' Vision Res. 32, 105-110 (1992). [CrossRef] [PubMed]
  39. J. C. Maxwell, 'On the unequal sensibility of the foramen centrale to light of different colours,' Rep. Brit. Assoc. 2, 12 (1856).
  40. W. R. Miles, 'Comparison of functional and structural areas in human fovea. I. Method of entopic plotting,' J. Neurophysiol. 17, 22-38 (1954). [PubMed]
  41. B. R. Hammond, J. Curran-Celentano, S. Judd, K. Fuld, N. I. Krinsky, B. R. Wooten, and D. M. Snodderly, 'Sex differences in macular pigment optical density: relation to plasma carotenoid concentrations and dietary patterns,' Vision Res. 36, 2001-2012 (1996). [CrossRef] [PubMed]
  42. W. M. Broekmans, T. T. Berendschot, I. A. Klopping-Ketelaars, A. J. de Vries, R. A. Goldbohm, L. B. Tijburg, A. F. Kardinaal, and G. van Poppel, 'Macular pigment density in relation to serum and adipose tissue concentrations of lutein and serum concentrations of zeaxanthin,' Am. J. Clin. Nutr. 76, 595-603 (2002). [PubMed]
  43. T. A. Ciulla, J. Curran-Celantano, D. A. Cooper, B. R. Hammond, Jr., R. P. Danis, L. M. Pratt, K. A. Riccardi, and T. G. Filloon, 'Macular pigment optical density in a midwestern sample,' Ophthalmology 108, 730-737 (2001). [CrossRef] [PubMed]
  44. A. G. Robson, J. D. Moreland, D. Pauleikhoff, T. Morrissey, G. E. Holder, F. W. Fitzke, A. C. Bird, and F. J. van Kuijk, 'Macular pigment density and distribution: comparison of fundus autofluorescence with minimum motion photometry,' Vision Res. 43, 1765-1775 (2003). [CrossRef] [PubMed]
  45. F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, 'Monochromatic ophthalmoscopy and fundus photography: the normal fundus,' Arch. Ophthalmol. (Chicago) 95, 861-868 (1977).
  46. Y. Chang, Institute of Biomedical Engineering, National Yang-Ming University, 155 Section 2 Li-Long Street, Shih-Pi, Taipei, Taiwan 11221 (personal communication, 2002).
  47. W. Gellermann, I. V. Ermakov, and R. W. McClane, 'Raman imaging of human macular pigments,' Opt. Lett. 27, 833-835 (2002). [CrossRef]
  48. T. Berendschot and D. van Norren, 'Macular pigment shows ring like structures,' Invest. Ophthalmol. Visual Sci. 46, 1774 (2006).
  49. B. R. Hammond and M. Caruso-Avery, 'Macular pigment optical density in a Southwestern sample,' Invest. Ophthalmol. Visual Sci. 41, 1492-1497 (2000).
  50. T. T. Berendschot and D. van Norren, 'On the age dependency of the macular pigment optical density,' Exp. Eye Res. 81, 602-609 (2005). [CrossRef] [PubMed]
  51. B. R. Hammond, Jr., Department of Psychology, University of Georgia, Franklin College of Arts and Sciences, Athens, Georgia 30677 (personal communication, 2002).
  52. B. R. Wooten and B. R. Hammond, Jr., 'Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,' Optom. Vision Sci. 82, 378-386 (2005). [CrossRef]
  53. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, 'Human photoreceptor topography,' J. Comp. Neurol. 292, 497-523 (1990). [CrossRef] [PubMed]
  54. C. A. Curcio and K. A. Allen, 'Topography of ganglion cells in human retina,' J. Comp. Neurol. 300, 5-25 (1990). [CrossRef] [PubMed]
  55. D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, 'Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),' J. Neurosci. 12, 1169-1193 (1992). [PubMed]
  56. L. Laatikainen and J. Larinkari, 'Capillary-free area of the fovea with advancing age,' Invest. Ophthalmol. Visual Sci. 16, 1154-1157 (1977).
  57. G. H. Bresnick, R. Condit, S. Syrjala, M. Palta, A. Groo, and K. Korth, 'Abnormalities of the foveal avascular zone in diabetic retinopathy,' Arch. Ophthalmol. (Chicago) 102, 1286-1293 (1984).
  58. L. Wu, Z. Huang, D. Wu, and E. Chan, 'Characteristics of the capillary-free zone in the normal macula,' Jpn. J. Ophthalmol. 29, 406-411 (1985). [PubMed]
  59. O. Arend, S. Wolfe, F. Jung, B. Bertram, and H. Postgens, 'Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network,' Br. J. Ophthamol. 75, 514-518 (1991). [CrossRef]
  60. R. S. Weinhaus, J. M. Burke, F. C. Delori, and D. M. Snodderly, 'Comparison of fluorescein angiography with microvascular anatomy of macaque retinas,' Exp. Eye Res. 61, 1-16 (1995). [CrossRef] [PubMed]
  61. M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, 'Topography of diabetic macular edema with optical coherence tomography,' Ophthalmology 105, 360-370 (1998). [CrossRef] [PubMed]
  62. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, 'Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,' Ophthalmology 110, 177-189 (2003). [CrossRef] [PubMed]
  63. P. Massin, A. Erginay, B. Haouchine, A. B. Mehidi, M. Paques, and A. Gaudric, 'Retinal thickness in healthy and diabetic subjects measured using optical coherence tomography mapping software,' Eur. J. Ophthalmol. 12, 102-108 (2002). [PubMed]
  64. S. Fraser-Bell, R. Varma, J. Lipyanik, V. M. Patella, D. Budenz, L. Cantor, D. Greenfield, J. Savell, J. Schuman, and M. Ying-Lai, 'Age, gender, ethnicity and refractive error related differences in normal macular thickness and volume as measured by STRATUS OCT,' Invest. Ophthalmol. Visual Sci. 46, 1542 (2005).
  65. D. Koozekanani, C. Roberts, S. E. Katz, and E. E. Herderick, 'Intersession repeatability of macular thickness measurements with the Humphrey 2000 OCT,' Invest. Ophthalmol. Visual Sci. 41, 1486-1491 (2000).
  66. J. M. Gorrand and F. C. Delori, 'Reflectance and curvature of the inner limiting membrane at the foveola,' J. Opt. Soc. Am. A 16, 1229-1237 (1999). [CrossRef]
  67. From the dimensions of the reflex, we calculated, using equations in the study of Gorrand and Delori, that the radius of curvature of the concave ILM reflector was 1180 and 744 µm for women and men, respectively. The method does not sample the entire foveal depression but considers only an eccentric annulus from where incident rays can be reflected through the detection pupil. We calculated that the center of that annulus is at 0.27° and 0.16° from the fovea in women and men, respectively, and that the angle between the ILM and the RPE surface is 3.7° and 3.6°, respectively.
  68. M. la Cour and J. Friis, 'Macular holes: classification, epidemiology, natural history and treatment,' Acta Ophthalmol. Scand. 80, 579-587 (2002). [CrossRef] [PubMed]
  69. W. E. Smiddy and H. W. Flynn, Jr., 'Pathogenesis of macular holes and therapeutic implications,' Am. J. Ophthalmol. 137, 525-537 (2004). [CrossRef] [PubMed]
  70. G. E. Eldred and M. L. Katz, 'Fluorophores of the human retinal pigment epithelium: separation and spectral characterization,' Exp. Eye Res. 47, 71-86 (1988). [CrossRef] [PubMed]
  71. J. R. Sparrow, N. Fishkin, J. Zhou, B. Cai, Y. P. Jang, S. Krane, Y. Itagaki, and K. Nakanishi, 'A2E, a byproduct of the visual cycle,' Vision Res. 43, 2983-2990 (2003). [CrossRef] [PubMed]
  72. R. F. Spaide, 'Fundus autofluorescence and age-related macular degeneration,' Ophthalmology 110, 392-399 (2003). [CrossRef] [PubMed]
  73. C. K. Dorey, G. Staurenghi, and F. C. Delori, 'Lipofuscin in aged and AMD eyes,' in Retinal Degeneration, J.G.Holyfield, R.E.Anderson, and M.M.LaVail, eds. (Plenum, 1993), pp. 3-14. [CrossRef]
  74. F. C. Delori, 'Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus,' Appl. Opt. 33, 7439-7452 (1994). [CrossRef] [PubMed]
  75. S. Siik, P. J. Airaksinen, A. Tuulonen, H. I. Alanko, and H. Nieminen, 'Lens autofluorescence in healthy individuals,' Acta Ophthalmol. 69, 187-192 (1991).
  76. B. Bordat, A. Laudeho, I. R. Guirguis, and C. Arnaud, 'Study of the crystalline lens by fluorophotometry in 60 control subjects and 56 diabetics,' J. Fr. Ophtalmol 15, 113-118 (1992) (in French). [PubMed]
  77. In previous reports, we used the signal at a fixed location outside the illuminated area to estimate SL [squares in Fig. ]. We found that this signal increased significantly with age for both Lambda's (p<0.0001) but that it was also affected by the choroidal pigmentation (as estimated by iris color). Measurements showed that there was a gradient away from the image edge caused by the red AF diffusing in the choroid. We also found that the signal was smaller in the four study pseudophakic subjects compared with the age- and gender-matched phakic subjects (for Lambda=470 nm,t=2.8,p=0.02).
  78. Crystalline lens AF was measured in three study subjects (ages 37, 46, and 57 years) by focusing the sampling volume within the lens. Excitation, normalized at 470 nm, were 0.91+/-0.01, 1.00+/-0.00, 0.53+/-0.02, and 0.24+/-0.02 at Lambda=430, 470, 510, and 550 nm, respectively. Emission spectra were maximal at 520+/-5 nm for Lambda=470 nm; at 600 nm, the fluorescence was 37%+/-2% of the maximum fluorescence. Fluorescence intensity increased with age of the three subjects. Excitation and emission spectra for one subject can be found in Fig. 8 of Ref. .
  79. J. M. Benitez del Castillo, T. del Rio, and J. Garcia-Sanchez, 'Effects of estrogen use on lens transmittance in postmenopausal women,' Ophthalmology 104, 970-973 (1997).
  80. J. Sandby-Moller, E. Thieden, P. Alshede Philipsen, G. Schmidt, and H. C. Wulf, 'Ocular lens blue autofluorescence cannot be used as a measure of individual cumulative UVR exposure,' Photodermatol. Photoimmunol. Photomed. 20, 41-46 (2004). [CrossRef] [PubMed]
  81. Since DMP still decreased at 4° in some subjects (Figs. ), we are underestimating DMP's compared with studies that used a reference at 7°. By exponential extrapolation of the profiles, we estimated that the DMP's with a reference at 4° would be 0.02+/-0.03 D.U. (range 0.0 to −0.16 D.U.) less than those with the reference at 7°. Furthermore, our peak DMP's were decreased by the smoothing that we used in our image analysis; reanalysis of our profiles using no smoothing caused the peak densities to increase by 0.03+/-0.02 D.U. (range 0.01-0.05 D.U.).
  82. A. Stockman and L. T. Sharpe, 'The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,' Vision Res. 40, 1711-1737 (2000). [CrossRef] [PubMed]
  83. S. A. Burns and A. E. Elsner, 'Color matching at high illuminances: photopigment optical density and pupil entry,' J. Opt. Soc. Am. A 10, 221-230 (1993). [CrossRef] [PubMed]
  84. P. M. Prieto, J. S. McLellan, and S. A. Burns, 'Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,' Vision Res. 45, 1957-1965 (2005). [CrossRef] [PubMed]
  85. A. J. Wenzel, K. Fuld, and J. M. Stringham, 'Light exposure and macular pigment optical density,' Invest. Ophthalmol. Visual Sci. 44, 306-309 (2003). [CrossRef]
  86. J. J. Weiter, F. C. Delori, G. Wing, and K. A. Fitch, 'Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,' Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).
  87. L. Feeney-Burns, E. R. Berman, and H. Rothman, 'Lipofuscin of human retinal pigment epithelium,' Am. J. Ophthalmol. 90, 783-791 (1980). [PubMed]
  88. V.-P. Gabel, R. Birngruber, and F. Hillenkamp, 'Visible and near infrared light absorption in pigment epithelium and choroid,' in XXIII Concilium Ophthalmol Kyoto, K.Shimuzu and J.A.Oosterhuis, eds. (Excerpta Medica, Amsterdam, 1979), pp. 658-662.
  89. C. N. Keilhauer, J. Fischer, J. Mlynski, A. Stangl, and F. C. Delori, 'Confocal infrared autofluorescence imaging in normal subjects and AMD patients,' Invest. Ophthalmol. Visual Sci. 46, 1394 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited