OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

Influence of multiple scattering on three-dimensional imaging with optical diffraction tomography

Kamal Belkebir, Patrick C. Chaumet, and Anne Sentenac  »View Author Affiliations

JOSA A, Vol. 23, Issue 3, pp. 586-595 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (734 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical diffraction tomography is an imaging technique that permits retrieval of the map of permittivity of an object from its scattered far field. Most reconstruction procedures assume that single scattering is dominant so that the scattered far field is linearly linked to the permittivity. In this work, we present a nonlinear inversion method and apply it to complex three-dimensional samples. We show that multiple scattering permits one to obtain a power of resolution beyond the classical limit imposed by the use of propagative incident and diffracted waves. Moreover, we stress that our imaging method is robust with respect to correlated and uncorrelated noise.

© 2006 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(180.6900) Microscopy : Three-dimensional microscopy
(290.3200) Scattering : Inverse scattering

ToC Category:

Original Manuscript: May 3, 2005
Revised Manuscript: July 8, 2005
Manuscript Accepted: August 23, 2005

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Kamal Belkebir, Patrick C. Chaumet, and Anne Sentenac, "Influence of multiple scattering on three-dimensional imaging with optical diffraction tomography," J. Opt. Soc. Am. A 23, 586-595 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Lauer, 'New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,' J. Microsc. 205, 165-176 (2002). [CrossRef] [PubMed]
  2. N. Destouches, C. A. Guérin, M. Lequime, and H. Giovannini, 'Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles,' Opt. Commun. 198, 233-239 (2001). [CrossRef]
  3. E. Wolf, 'Three-dimensional structure determination of semi-transparent objects from holographic data,' Opt. Commun. 1, 153-156 (1969). [CrossRef]
  4. S. Kawata, O. Nakamura, and S. Minami, 'Optical microscope tomography. I. Support constraint,' J. Opt. Soc. Am. A 4, 292-297 (1987). [CrossRef]
  5. P. S. Carney and J. C. Schotland, 'Three-dimensional total-internal reflection microscopy,' Opt. Lett. 26, 1072-1074 (2001). [CrossRef]
  6. P. Chaumet, K. Belkebir, and A. Sentenac, 'Three-dimensional subwavelength optical imaging using the coupled dipole method,' Phys. Rev. B 69, 245405 (2004). [CrossRef]
  7. E. M. Purcell and C. R. Pennypacker, 'Scattering and absorption of light by nonspherical dielectric grains,' Astrophys. J. 186, 705-714 (1973). [CrossRef]
  8. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).
  9. A. Lakhtakia, 'Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetics fields,' Int. J. Mod. Phys. C 3, 583-603 (1992). [CrossRef]
  10. P. C. Chaumet and M. Nieto-Vesperinas, 'Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,' Phys. Rev. B 61, 14119-14127 (2000). [CrossRef]
  11. P. C. Chaumet and M. Nieto-Vesperinas, 'Electromagnetic force on a metallic particle in the presence of a dielectric surface,' Phys. Rev. B 62, 11185-11191 (2000). [CrossRef]
  12. P. C. Chaumet and M. Nieto-Vesperinas, 'Time-averaged total force on a dipolar sphere in an electromagnetic field,' Opt. Lett. 25, 1065-1067 (2000). [CrossRef]
  13. B. T. Draine, 'The discrete dipole approximation and its application to interstellar graphite grains,' Astrophys. J. 333, 848-872 (1988). [CrossRef]
  14. W. C. Chew and Y. M. Wang, 'Reconstruction of two-dimensional permittivity distribution using the distorted wave Born iterative method,' IEEE Trans. Med. Imaging 9, 218-235 (1990). [CrossRef] [PubMed]
  15. N. Joachimowicz, C. Pichot, and J.-P. Hugonin, 'Inverse scattering: An iterative numerical method for electromagnetic imaging,' IEEE Trans. Antennas Propag. 39, 1742-1751 (1991). [CrossRef]
  16. A. G. Tijhuis, 'Born-type reconstruction of material parameters of an inhomogeneous, lossy dielectric slab from reflected-field data,' Wave Motion 11, 151-173 (1989). [CrossRef]
  17. A. G. Tijhuis, K. Belkebir, A. C. S. Litman, and B. P. de Hon, 'Theoretical and computational aspects of 2-D inverse profiling,' IEEE Trans. Geosci. Remote Sens. GE-39, 1316-1330 (2001). [CrossRef]
  18. R. E. Kleinman and P. M. van den Berg, 'A modified gradient method for two-dimensional problems in tomography,' J. Comput. Appl. Math. 42, 17-35 (1992). [CrossRef]
  19. R. E. Kleinman and P. M. van den Berg, 'An extended range-modified gradient technique for profile inversion,' Radio Sci. 28, 877-884 (1993). [CrossRef]
  20. K. Belkebir and A. G. Tijhuis, 'Modified2 gradient method and modified Born method for solving a two-dimensional inverse scattering problem,' Inverse Probl. 17, 1671-1688 (2001). [CrossRef]
  21. K. Belkebir, S. Bonnard, F. Pezin, P. Sabouroux, and M. Saillard, 'Validation of 2D inverse scattering algorithms from multi-frequency experimental data,' J. Electromagn. Waves Appl. 14, 1637-1667 (2000). [CrossRef]
  22. K. Belkebir and A. Sentenac, 'High resolution optical diffraction microscopy,' J. Opt. Soc. Am. A 20, 1223-1229 (2003). [CrossRef]
  23. P. S. Carney, V. A. Markel, and J. C. Schotland, 'Near-field tomography without phase retrieval,' Phys. Rev. Lett. 86, 5874-5877 (2001). [CrossRef] [PubMed]
  24. P. M. van den Berg and R. E. Kleinman, 'A contrast source inversion method,' Inverse Probl. 13, 1607-1620 (1997). [CrossRef]
  25. A. Abubakar, P. M. van den Berg, and B. J. Kooij, 'A conjugate gradient contrast source technique for 3D profile inversion,' IEICE Trans. Electron. E83-C, 1864-1874 (2000).
  26. A. Abubakar and P. M. van den Berg, 'The contrast source inversion method for location and shape reconstructions,' Inverse Probl. 18, 495-510 (2002). [CrossRef]
  27. W. H. Press, B. P. Flannery, S. A. Teukolski, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, 1986).
  28. K. Belkebir, R. E. Kleinman, and C. Pichot, 'Microwave imaging--Location and shape reconstruction from multifrequency scattering data,' IEEE Trans. Microwave Theory Tech. 45, 469-476 (1997). [CrossRef]
  29. L. Souriau, B. Duchêne, D. Lesselier, and R. E. Kleinman, 'Modified gradient approach to inverse scattering for binary objects in stratified media,' Inverse Probl. 12, 463-481 (1996). [CrossRef]
  30. R. E. Kleinman and P. M. van den Berg, 'Two-dimensional location and shape reconstruction,' Radio Sci. 29, 1157-1169 (1994). [CrossRef]
  31. J. Daillant and A. Gibaud, X-Ray and Neutron ReflectivityLecture Notes in Physics (Springer-Verlag, 1999), p. 130.
  32. C.-A. Guérin and A. Sentenac, 'Second-order perturbation theory for scattering from heterogeneous rough surfaces,' J. Opt. Soc. Am. A 21, 1251-1260 (2004). [CrossRef]
  33. T. M. Habashy, R. W. Groom, and B. R. Spies, 'Beyond the Born and Rytov approximations-A nonlinear approach to electromagnetic scattering,' J. Geophys. Res., [Solid Earth] 98, 1759-1775 (1993). [CrossRef]
  34. P. C. Chaumet, A. Rahmani, F. de Fornel, and J.-P. Dufour, 'Evanescent light scattering: The validity of the dipole approximation,' Phys. Rev. B 58, 2310-2315 (1998). [CrossRef]
  35. A. Rahmani, P. C. Chaumet, and F. de Fornel, 'Environment-induced modification of spontaneous emission: Single-molecule near-field probe,' Phys. Rev. A 63, 023819 (2001). [CrossRef]
  36. P. C. Chaumet, A. Rahmani, and G. W. Bryant, 'Generalization of the coupled dipole method to periodic structure,' Phys. Rev. B 67, 165404 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited