OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 3 — Mar. 7, 2007

Analytic solution for separating spectra into illumination and surface reflectance components

Mark S. Drew and Graham D. Finlayson  »View Author Affiliations


JOSA A, Vol. 24, Issue 2, pp. 294-303 (2007)
http://dx.doi.org/10.1364/JOSAA.24.000294


View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The measured light spectrum is the result of an illuminant interacting with a surface. The illuminant spectral power distribution multiplies the surface spectral reflectance function to form a color signal—the light spectrum that gives rise to our perception. Disambiguation of the two factors, illuminant and surface, is difficult without prior knowledge. Previously [ IEEE Trans. Pattern Anal. Mach. Intell. 12, 966 (1990) ; J. Opt. Soc. Am. A 21, 1825 (2004) ], one approach to this problem applied a finite-dimensional basis function model to recover the separate illuminant and surface reflectance components that make up the color signal, using principal component bases for lights and for reflectances. We introduce the idea of making use of finite-dimensional models of logarithms of spectra for this problem. Recognizing that multiplications turn into additions in such a formulation, we can replace the original iterative method with a direct, analytic algorithm with no iteration, resulting in a speedup of several orders of magnitude. Moreover, in the new, logarithm-based approach, it is straightforward to further design new basis functions, for both illuminant and reflectance simultaneously, such that the initial basis function coefficients derived from the input color signal are optimally mapped onto separate coefficients that produce spectra that more closely approximate the illuminant and the surface reflectance for any given dimensionality. This is accomplished by using an extra bias correction step that maps the analytically determined basis function coefficients onto the optimal coefficient set, separately for lights and surfaces, for the training set. The analytic equation plus the bias correction is then used for unknown input color signals.

© 2007 Optical Society of America

OCIS Codes
(150.0150) Machine vision : Machine vision
(150.2950) Machine vision : Illumination

ToC Category:
Machine Vision

History
Original Manuscript: April 21, 2006
Revised Manuscript: June 15, 2006
Manuscript Accepted: July 11, 2006

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Mark S. Drew and Graham D. Finlayson, "Analytic solution for separating spectra into illumination and surface reflectance components," J. Opt. Soc. Am. A 24, 294-303 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-2-294

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited