OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Phenomenological study of binding in optically trapped photonic crystals

D. Maystre and P. Vincent  »View Author Affiliations

JOSA A, Vol. 24, Issue 8, pp. 2383-2393 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (369 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a phenomenological theory of the phenomenon of binding observed both experimentally and numerically when particles are trapped by an interference system in order to make a structure close to a photonic crystal. This theory leads to a very simple conclusion, which links the binding phenomenon to the bottom of the lowest bandgap of the trapped crystal in a given direction. The phenomenological theory allows one to calculate the period of the trapped crystal by using numerical tools on dispersion diagrams of photonic crystals. It emerges that the agreement of our theory with our rigorous numerical results given in a previous paper [J. Opt A 8, 1059 (2006)] is better than 2% on the crystal period. Furthermore, it is shown that in two-dimensional problems and s polarization, all the optical forces derive from a scalar potential.

© 2007 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(140.7010) Lasers and laser optics : Laser trapping
(260.2110) Physical optics : Electromagnetic optics
(290.5850) Scattering : Scattering, particles

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 8, 2006
Revised Manuscript: February 14, 2007
Manuscript Accepted: March 6, 2007
Published: July 11, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

D. Maystre and P. Vincent, "Phenomenological study of binding in optically trapped photonic crystals," J. Opt. Soc. Am. A 24, 2383-2393 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. U.S.A. 94, 4853-4860 (1997). [CrossRef]
  3. M. Burns, J.-M. Fournier, and J. Golovshenko, "Optical binding," Phys. Rev. Lett. 63, 1233-1236 (1989). [CrossRef]
  4. M. Burns, J.-M. Fournier, and J. Golovshenko, "Lateral binding effect, due to particle's optical interaction," Science 289, 749-754 (1990). [CrossRef]
  5. J.-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, "Building optical matter with binding and trapping forces," Proc. SPIE 5514, 309-317 (2004). [CrossRef]
  6. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, "Self-organized array of regularly spaced microbeads in a fiber-optical trap," J. Opt. Soc. Am. B 20, 1568-1574 (2003). [CrossRef]
  7. S. Tatarkova, A. Carruthers, and K. Dholakia, "One-dimensional optically bound arrays of microscopic particles," Phys. Rev. Lett. 89, 283901 (2002). [CrossRef]
  8. N. Metzger, K. Dholakia, and E. Wright, "Observation of bistability and hysteresis in optical binding of two dielectric spheres," Phys. Rev. Lett. 96, 068102 (2006). [CrossRef] [PubMed]
  9. C. Mellor and C. Bain Chem, "Array formation in evanescent waves," ChemPhysChem 7, 329-332 (2006). [CrossRef]
  10. N. Metzger, E. Wright, W. Sibbett, and K. Dholakia, "Visualization of optical binding of microparticles using a femtosecond fiber optical trap," Opt. Express 14, 3677-3687 (2006). [CrossRef] [PubMed]
  11. P. Chaumet and M. Nieto-Vesperinas, "Time averaged total force on a dipolar sphere in an electromagnetic field," Opt. Lett. 25, 1065-1067 (2000). [CrossRef]
  12. T. Grzegorczyk, B. Kemp, and J. Kong, "Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field," J. Opt. Soc. Am. A 23, 2324-2330 (2006). [CrossRef]
  13. T. Grzegorczyk, B. Kemp, and J. Kong, "Stable optical trapping based on optical binding forces," Phys. Rev. Lett. 96, 113903 (2006). [CrossRef] [PubMed]
  14. M. Povinelli, S. Johnson, M. Lonèar, M. Ibanescu, E. Smythe, F. Capasso, and J. Joannopoulos, "High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators," Opt. Express 13, 8286-8295 (2005). [CrossRef] [PubMed]
  15. D. McGloin, A. Carruthers, K. Dholakia, and E. Wright, "Optically bound microscopic particles in one dimension," Phys. Rev. E 69, 021403 (2004). [CrossRef]
  16. A. Rohrbach and E. Stelzer, "Trapping forces and potentials of dielectric spheres in the presence of spherical aberrations," J. Opt. Soc. Am. A 18, 839-853 (2001). [CrossRef]
  17. E. Lidorikis, Q. Li, and C. Soukoulis, "Optical bistability in colloidal crystals," Phys. Rev. E 55, 3613-3618 (1997). [CrossRef]
  18. M. Antonoyiannakis and J. Pendry, "Electromagnetic forces in photonic crystals," Phys. Rev. B 60, 2363-2374 (1999). [CrossRef]
  19. J. Ng, C. T. Chan, P. Sheng, and Z. Lin, "Strong optical force induced by morphology-dependent resonances," Opt. Lett. 30, 1956-1958 (2005). [CrossRef] [PubMed]
  20. D. Maystre and P. Vincent, "Making photonic crystals using trapping and binding optical forces on particles," J. Opt. A, Pure Appl. Opt. 8, 1059-1066 (2006). [CrossRef]
  21. J. A. Kong, Maxwell Equations (EMW Publishing, 2002).
  22. J. Van Bladel, Electromagnetic Fields (Mc Graw-Hill, 1964).
  23. D. Maystre, "General study of grating anomalies," in Electromagnetic Surface Modes, A.D.Boardmann, ed. (Wiley, 1982), pp. 661-724.
  24. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).
  25. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton U. Press, 1995).
  26. C. Soukoulis, Photonic Band Gap Materials (Kluwer, 1996).
  27. D. Felbacq and G. Bouchitté, "Homogenization of a set of parallel fibers," Waves Random Media 7, 245-256 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited