OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 5 — May. 5, 2009

Forward-calculated analytical interferograms in pass-through photon-based biomedical transillumination

Paulino Vacas-Jacques, Marija Strojnik, and Gonzalo Paez  »View Author Affiliations


JOSA A, Vol. 26, Issue 3, pp. 602-612 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000602


View Full Text Article

Enhanced HTML    Acrobat PDF (958 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, we have introduced a transillumination technique for biomedical diagnosis. The technique, pass-through photon-based transillumination, relies on interferometric measurements to recover the information of interest. In this work, we present the forward-calculated analytical interferograms that describe the behavior of the system. Stochastic modeling of radiation interacting with tissue enables determination of amplitude and phase parameters, indispensable for computation of the interferograms. Sample variability is assessed by studying tissue phantoms similar to those used in the experimental verification of the technique and that are representative of (abnormal) dental tissues. For tissue characterization, perfect recovery of the integrated attenuation ensues by employing spatially compact radiation sources. For tissue imaging, spatially extended sources with broad bandwidth are superior due to the implicit longitudinal coherence filter. For both applications, sample variability issues may be neutralized by permitting spatial divergence of scattered photons.

© 2009 Optical Society of America

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 18, 2008
Revised Manuscript: December 8, 2008
Manuscript Accepted: December 9, 2008
Published: February 20, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Paulino Vacas-Jacques, Marija Strojnik, and Gonzalo Paez, "Forward-calculated analytical interferograms in pass-through photon-based biomedical transillumination," J. Opt. Soc. Am. A 26, 602-612 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-3-602


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Diagnosis and management of dental caries throughout life,” National Institutes of Health Consensus Statement 18 (NIH, 2001), pp. 1-30.
  2. I. Pretty, “Caries detection and diagnosis: Novel technologies,” J. Dent. 34, 727-739 (2006). [CrossRef] [PubMed]
  3. D. Boston, “Incipient and hidden caries,” Dent. Clin. North Am. 49, xi-xii (2005). [CrossRef] [PubMed]
  4. J. Yang and V. Dutra, “Utility of radiology, laser fluorescence, and transillumination,” Dent. Clin. North Am. 49, 739-752 (2005). [CrossRef] [PubMed]
  5. A. Hall and J. Girkin, “A review of potential new diagnostic modalities for caries lesions,” J. Dent. Res. 83, C89-C94 (2004). [CrossRef] [PubMed]
  6. M. Huysmans, “Electrical measurements for early caries detection,” in Proceedings of the 4th Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1999), pp. 123-142.
  7. C. Longbottom and M. Huysmans, “Electrical measurements for use in caries clinical trials,” J. Dent. Res. 83, C76-C79 (2004). [CrossRef] [PubMed]
  8. S. White and D. Yoon, “Comparative performance of digital and conventional images for detecting proximal surface caries,” Dentomaxillofac. Radiol. 26, 32-38 (1997). [CrossRef] [PubMed]
  9. R. Ellwood, R. Davies, and H. Worthington, “Evaluation of a dental subtraction radiography system,” J. Periodontal Res. 21, 241-248 (1997). [CrossRef]
  10. F. Yanikoğlu and M. Analoui, “Ultrasonic methods for early caries detection,” in Proceedings of the 4th Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1999), pp. 101-122.
  11. F. Yanikoğlu, F. Öztürk, O. Hayran, M. Analoui, and G. Stookey, “Detection of natural white spot caries lesions by an ultrasonic system,” Caries Res. 34, 225-232 (2000). [CrossRef]
  12. B. Angmar-Mansson and J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298-307 (2001). [CrossRef] [PubMed]
  13. M. van der Veen and E. de Josselin de Jong, “Application of quantitative light-induced fluorescence for assessing early caries lesions,” in Monographs in Oral Science: Assessment of Oral Health, R.Faller, ed. (Karger, 2001), pp. 144-162.
  14. B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Express 3, 230-238 (1998). [CrossRef] [PubMed]
  15. A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000). [CrossRef]
  16. R. Jones, G. Huynh, G. Jones, and D. Fried, “Near-infrared transillumination at 1310-nm for the imaging of early dental decay,” Opt. Express 11, 2259-2265 (2003). [CrossRef] [PubMed]
  17. C. Bühler, P. Ngaotheppitak, and D. Fried, “Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm,” Opt. Express 13, 573-582 (2005). [CrossRef] [PubMed]
  18. C. Pine, “Fibre-optic transillumination (FOTI) in caries diagnosis,” in Proceedings of the 1st Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1996), pp. 51-65.
  19. G. Davies, H. Worthington, J. Clarkson, P. Thomas, and R. Davies, “The use of fibre-optic transillumination in general dental practice,” Br. Dent. J. 191, 145-147 (2001). [CrossRef] [PubMed]
  20. P. Vacas-Jacques, G. Paez, and M. Strojnik, “Pass-through photon-based biomedical transillumination,” J. Biomed. Opt. 13, 041307 (2008). [CrossRef] [PubMed]
  21. G. Paez, M. Strojnik, and M. Scholl, “Interferometric tissue characterization: I. Theory,” Proc. SPIE 5883, 58830Y (2005). [CrossRef]
  22. M. Strojnik and G. Paez, “Interferometric tissue characterization: II. Experimental,” Proc. SPIE 5883, 58830W (2005). [CrossRef]
  23. M. Strojnik and G. Paez, “Interferometric tissue characterization: III. Calibration,” Proc. SPIE 5883, 58830V (2005). [CrossRef]
  24. G. Paez, M. Strojnik, and S. Scholl, “Interferometric tissue characterization: IV. Material coherence function,” Proc. SPIE 5883, 58830X (2005). [CrossRef]
  25. P. Vacas-Jacques, M. Strojnik, and G. Paez, “Monte-Carlo simulation of photon transillumination time of flight,” Proc. SPIE 6631, 663114 (2007). [CrossRef]
  26. R. Jones and D. Fried, “Attenuation of 1310-nm and 1550-nm laser light through sound dental enamel,” Proc. SPIE 4610, 187-190 (2002). [CrossRef]
  27. D. Fried, J. Featherstone, C. Darling, R. Jones, P. Ngaotheppitak, and C. Bühler, “Early caries imaging and monitoring with near-infrared light,” Dent. Clin. North Am. 49, 771-793 (2005). [CrossRef] [PubMed]
  28. Y. Pan, R. Birngruber, J. Rosperich, and R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564-6574 (1995). [CrossRef] [PubMed]
  29. L. Wang, S. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  30. M. Yip and M. Carvalho, “A Monte-Carlo maplet for the study of the optical properties of biological tissues,” Comput. Phys. Commun. 177, 965-975 (2007). [CrossRef]
  31. S. Flock, B. Wilson, and M. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835-841 (1987). [CrossRef] [PubMed]
  32. W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  33. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420-4438 (2005). [CrossRef] [PubMed]
  34. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10393-10405 (2005).
  35. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530-6539 (2004). [CrossRef] [PubMed]
  36. G. Xiong, P. Xue, J. Wu, Q. Miao, R. Wang, and L. Ji, “Particle-fixed Monte Carlo model for optical coherence tomography,” Opt. Express 13, 2182-2195 (2005). [CrossRef] [PubMed]
  37. J. Zijp, J. ten Bosch, and R. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891-1898 (1995). [CrossRef] [PubMed]
  38. D. Fried, R. Glena, J. Featherstone, and W. Seka, “The nature of light scattering in dental enamel and dentin at visible and near-IR wavelengths,” Appl. Opt. 34, 1278-1285 (1995). [CrossRef] [PubMed]
  39. B. Pogue and M. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006). [CrossRef] [PubMed]
  40. H. van Staveren, C. Moes, J. van Marle, S. Prahl, and M. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991). [CrossRef] [PubMed]
  41. S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992). [CrossRef] [PubMed]
  42. M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008). [CrossRef]
  43. R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited