OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Monte Carlo Green’s function formalism for the propagation of partially coherent light

Scott A. Prahl, David G. Fischer, and Donald D. Duncan  »View Author Affiliations

JOSA A, Vol. 26, Issue 7, pp. 1533-1543 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a Monte Carlo-derived Green’s function for the propagation of partially spatially coherent fields. This Green’s function, which is derived by sampling Huygens–Fresnel wavelets, can be used to propagate fields through an optical system and to compute first- and second-order field statistics directly. The concept is illustrated for a cylindrical f/1 imaging system. A Gaussian copula is used to synthesize realizations of a Gaussian Schell-model field in the pupil plane. Physical optics and Monte Carlo predictions are made for the first- and second-order statistics of the field in the vicinity of the focal plane for a variety of source coherence conditions. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. This formalism can be generally employed to treat the interaction of partially coherent fields with diffracting structures.

© 2009 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.5620) Coherence and statistical optics : Radiative transfer
(030.6600) Coherence and statistical optics : Statistical optics
(110.4980) Imaging systems : Partial coherence in imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Coherence and Statistical Optics

Original Manuscript: February 27, 2009
Revised Manuscript: May 6, 2009
Manuscript Accepted: May 8, 2009
Published: June 10, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Scott A. Prahl, David G. Fischer, and Donald D. Duncan, "Monte Carlo Green's function formalism for the propagation of partially coherent light," J. Opt. Soc. Am. A 26, 1533-1543 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 1998).
  2. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19, 1592-1598 (2002). [CrossRef]
  3. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307-2320 (1999). [CrossRef] [PubMed]
  4. Q. Lu, X. Gan, M. Gu, and Q. Luo, “Monte Carlo modeling of optical coherence tomography imaging through turbid media,” Appl. Opt. 43, 1628-1637 (2004). [CrossRef] [PubMed]
  5. C. Mujat and A. Dogariu, “Statistics of partially coherent beams: a numerical analysis,” J. Opt. Soc. Am. A 21, 1000-1003 (2004). [CrossRef]
  6. F.Mayinger and O.Feldmann, eds., Optical Measurements: Techniques and Applications (Springer-Verlag, 2001). [CrossRef]
  7. J.Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 1995).
  8. M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148-154 (1989). [CrossRef] [PubMed]
  9. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  10. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580-1588 (2000). [CrossRef]
  11. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge U. Press, 1999).
  12. A. M. Zysk, P. S. Carney, and J. C. Schotland, “Eikonal method for calculation of coherence functions,” Phys. Rev. Lett. 95, 043904 (2005). [CrossRef] [PubMed]
  13. J. C. Petruccelli and M. A. Alonso, “Ray-based propagation of the cross-spectral density,” J. Opt. Soc. Am. A 25, 1395-1405 (2008). [CrossRef]
  14. N. G. Douglas, A. R. Jones, and F. J. van Hoesel, “Ray-based simulation of an optical interferometer,” J. Opt. Soc. Am. A 12, 124-131 (1995). [CrossRef]
  15. F. Riechert, F. Dürr, U. Rohlfing, and U. Lemmer, “Ray-based simulation of the propagation of light with different degrees of coherence through complex optical systems,” Appl. Opt. 48, 1527-1534 (2009). [CrossRef] [PubMed]
  16. D. G. Fischer, S. A. Prahl, and D. D. Duncan, “Monte Carlo modeling of spatial coherence: free-space diffraction,” J. Opt. Soc. Am. A 25, 2571-2581 (2008). [CrossRef]
  17. N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335-341 (1949). [CrossRef] [PubMed]
  18. J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction, and Focusing of Light, Sound, and Water Waves (Adam Hilger, 1986).
  19. R. B. Nelson, An Introduction to Copulas (Springer-Verlag, 1999).
  20. D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating dynamic speckle,” J. Opt. Soc. Am. A 25, 231-237 (2008). [CrossRef]
  21. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th ed. (McGraw-Hill, 2002).
  22. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1975), pp. 9-75. [CrossRef]
  23. J. W. Goodman, Statistical Optics (Wiley, 1985).
  24. D. G. Fischer and T. D. Visser, “Spatial correlation properties of focused partially coherent light,” J. Opt. Soc. Am. A 21, 2097-2102 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited