## Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach

JOSA A, Vol. 27, Issue 10, pp. 2261-2271 (2010)

http://dx.doi.org/10.1364/JOSAA.27.002261

Enhanced HTML Acrobat PDF (748 KB)

### Abstract

A surface integral formulation for light scattering on periodic structures is presented. Electric and magnetic field equations are derived on the scatterers’ surfaces in the unit cell with periodic boundary conditions. The solution is calculated with the method of moments and relies on the evaluation of the periodic Green’s function performed with Ewald’s method. The accuracy of this approach is assessed in detail. With this versatile boundary element formulation, a very large variety of geometries can be simulated, including doubly periodic structures on substrates and in multilayered media. The surface discretization shows a high flexibility, allowing the investigation of irregular shapes including fabrication accuracy. Deep insights into the extreme near-field of the scatterers as well as in the corresponding far-field are revealed. This method will find numerous applications for the design of realistic photonic nanostructures, in which light propagation is tailored to produce novel optical effects.

© 2010 Optical Society of America

**OCIS Codes**

(050.1755) Diffraction and gratings : Computational electromagnetic methods

(350.4238) Other areas of optics : Nanophotonics and photonic crystals

**ToC Category:**

Diffraction and Gratings

**History**

Original Manuscript: May 28, 2010

Revised Manuscript: July 21, 2010

Manuscript Accepted: August 5, 2010

Published: September 27, 2010

**Virtual Issues**

Vol. 5, Iss. 14 *Virtual Journal for Biomedical Optics*

**Citation**

Benjamin Gallinet, Andreas M. Kern, and Olivier J. F. Martin, "Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach," J. Opt. Soc. Am. A **27**, 2261-2271 (2010)

http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-27-10-2261

Sort: Year | Journal | Reset

### References

- R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980). [CrossRef]
- J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
- C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007). [CrossRef] [PubMed]
- S. Bozhevolnyi, J. Erland, K. Leosson, P. Skovgaard, and J. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001). [CrossRef] [PubMed]
- L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
- K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).
- M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
- D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
- S. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002). [CrossRef]
- K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
- P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, 2003). [CrossRef]
- J. Jin, Finite Element Method in Electromagnetics (Wiley, 2002).
- J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. Nouv. Rev. Opt. 11, 235–241 (1980).
- A. Wirgin and R. Deleuil, “Theoretical and experimental investigation of a new type of blazed grating,” J. Opt. Soc. Am. 59, 1348–1357 (1969). [CrossRef]
- T. Delort and D. Maystre, “Finite-element method for gratings,” J. Opt. Soc. Am. A 10, 2592–2601 (1993). [CrossRef]
- B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
- O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998). [CrossRef]
- P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structures,” Phys. Rev. B 67, 165404 (2003). [CrossRef]
- B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703 (2008). [CrossRef]
- P. C. Chaumet and A. Sentenac, “Simulation of light scattering by multilayer cross-gratings with the coupled dipole method,” J. Quant. Spectrosc. Radiat. Transf. 110, 409–414 (2009). [CrossRef]
- T. Eibert, J. Volakis, D. Wilton, and D. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antennas Propag. 47, 843–850 (1999). [CrossRef]
- M. S. Yeung and E. Barouch, “Three-dimensional nonplanar lithography simulation using a periodic fast multipole method,” Proc. SPIE 3051, 509–521 (1997). [CrossRef]
- M. S. Yeung, “Single integral equation for electromagnetic scattering by three-dimensional homogeneous dielectric objects,” IEEE Trans. Antennas Propag. 47, 1615–1622 (1999). [CrossRef]
- F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002). [CrossRef]
- A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009). [CrossRef]
- R. F. Harrington, Field Computation by Moment Methods (Macmillan, 1968).
- N. Marly, D. De Zutter, and H. Pues, “A surface integral equation approach to the scattering and absorption of doubly periodic lossy structures,” IEEE Trans. Electromagn. Compat. 36, 14–22 (1994). [CrossRef]
- N. Marly, B. Baekelandt, D. De Zutter, and H. Pues, “Integral equation modeling of the scattering and absorption of multilayered doubly-periodic lossy structures,” IEEE Trans. Antennas Propag. 43, 1281–1287 (1995).
- L. Trintinalia and H. Ling, “Integral equation modeling of multilayered doubly-periodic lossy structures using periodic boundary condition and a connection scheme,” IEEE Trans. Antennas Propag. 52, 2253–2261 (2004). [CrossRef]
- I. Stevanovic, P. Crespo-Valero, K. Blagovic, F. Bongard, and J. R. Mosig, “Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation,” IEEE Trans. Microwave Theory Tech. 54, 3688–3697 (2006). [CrossRef]
- H. Fischer, A. Nesci, G. Leveque, and O. J. F. Martin, “Characterization of the polarization sensitivity anisotropy of a near-field probe using phase measurements,” J. Microsc. 230, 27–31 (2008). [CrossRef] [PubMed]
- C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, IEEE Series on Electromagnetic Waves, 2nd ed. (IEEE, 1994).
- W. Ludwig and C. Falter, Symmetries in Physics: Group Theory Applied to Physical Problems, Vol. 64 of Springer Series in Solid-State Sciences (Springer-Verlag, 1988).
- A. Rathsfeld, G. Schmidt, and B. H. Kleemann, “On a fast integral equation method for diffraction gratings,” Comm. Comp. Phys. 1, 984–1009 (2006).
- F. Capolino, D. R. Wilton, and W. A. Johnson, “Efficient computation of the 3D Green’s function for the Helmholtz operator for a linear array of point sources using the Ewald method,” J. Comput. Phys. 223, 250–261 (2007). [CrossRef]
- I. Stevanoviæ and J. R. Mosig, “Periodic Green’s function for skewed 3-D lattices using the Ewald transformation,” Microwave Opt. Technol. Lett. 49, 1353–1357 (2007). [CrossRef]
- K. E. Jordan, G. R. Richter, and P. Sheng, “An efficient numerical evaluation of the green-function for the Helmholtz operator on periodic structures,” J. Comput. Phys. 63, 222–235 (1986). [CrossRef]
- S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982). [CrossRef]
- P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general composite metallic and dielectric structures with junctions,” PIER 52, 81–108 (2005). [CrossRef]
- G. R. Cowper, “Gaussian quadrature formulas for triangles,” Int. J. Numer. Methods Eng. 7, 405–408 (1973). [CrossRef]
- T. K. Wu and L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977). [CrossRef]
- X. Q. Sheng, J. M. Jin, J. M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998). [CrossRef]
- P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005). [CrossRef]
- P. J. Flatau, “Improvements in the discrete-dipole approximation method of computing scattering and absorption,” Opt. Lett. 22, 1205–1207 (1997). [CrossRef] [PubMed]
- G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007). [CrossRef]
- E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999). [CrossRef]
- D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
- B. Gallinet and O. J. F. Martin, “Scattering on plasmonic nanostructures arrays modeled with a surface integral formation,” Photonics Nanostruct. Fund. Appl. 8, 278–284 (2010). [CrossRef]
- I. Hanninen, M. Taskinen, and J. Sarvas, “Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions,” PIER 63, 243–278 (2006). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.