OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Individual far-field model for photon sieves composed of square pinholes

Junyong Zhang, Qing Cao, Xingqiang Lu, and Zunqi Lin  »View Author Affiliations

JOSA A, Vol. 27, Issue 6, pp. 1342-1346 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photon sieve can be composed of a large number of square pinholes. By taking the related coordinate transform into account, we present here an individual far-field model for a photon sieve composed of many square pinholes whose edges are symmetrically vertical or parallel to the polar coordinate. In particular, a simple analytical expression for the diffracted far field of an individual square pinhole is given, and the focusing contribution from an individual square pinhole is further discussed. The obtained results can be used for the analysis, design, and simulation of a high numerical aperture photon sieve composed of the above-mentioned square pinholes.

© 2010 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1960) Diffraction and gratings : Diffraction theory
(110.1650) Imaging systems : Coherence imaging
(180.7460) Microscopy : X-ray microscopy
(220.2560) Optical design and fabrication : Propagating methods
(340.7440) X-ray optics : X-ray imaging

ToC Category:
Diffraction and Gratings

Original Manuscript: December 16, 2009
Revised Manuscript: April 8, 2010
Manuscript Accepted: April 9, 2010
Published: May 14, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Junyong Zhang, Qing Cao, Xingqiang Lu, and Zunqi Lin, "Individual far-field model for photon sieves composed of square pinholes," J. Opt. Soc. Am. A 27, 1342-1346 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Schmahl, D. Rudolph, P. Guttmann, and O. Christ, in X-Ray Microscopy, G.Schmahl and D.Rudolph, eds. (Springer-Verlag, 1984), Vol. 43, pp. 63–74.
  2. E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13, 2529–2534 (1995). [CrossRef]
  3. E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high-resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970–2975 (2000). [CrossRef]
  4. H. Arsenault, “Diffraction theory of Fresnel zone plates,” J. Opt. Soc. Am. 58, 1536 (1968). [CrossRef]
  5. J. A. Sun and A. Cai, “Archaic focusing properties of Fresnel zone plates,” J. Opt. Soc. Am. A 8, 33–35 (1991). [CrossRef]
  6. R. Chmelík, “Analytical description of wave fields in focal regions of diffractive lenses,” J. Mod. Opt. 43, 1463–1471 (1996). [CrossRef]
  7. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and T. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184–188 (2001). [CrossRef] [PubMed]
  8. Q. Cao and J. Jahns, “Focusing analysis of the pinhole photon sieve: individual far-field model,” J. Opt. Soc. Am. A 19, 2387–2393 (2002). [CrossRef]
  9. Q. Cao and J. Jahns, “Nonparaxial model for the focusing of high numerical aperture photon sieves,” J. Opt. Soc. Am. A 20, 1005–1012 (2003). [CrossRef]
  10. G. Cheng, T. Xing, Y. Yang, and J. Ma, “Experimental characterization of optical properties of photon sieve,” Proc. SPIE 6724, 1–6 (2007).
  11. Z. Gao, X. Luo, J. Ma, Y. Fu, and C. Du, “Imaging properties of the photon sieve with a large aperture,” Opt. Laser Technol. 40, 614–618 (2008). [CrossRef]
  12. J. Zhang, Q. Cao, X. Lu, and Z. Lin, “Focusing contribution of individual pinholes of a photon sieve: dependence on the order of local ring of underlying traditional Fresnel zone plate,” Chin. Opt. Lett. 8, 256–258 (2010).
  13. G. Andersen, “Large optical photon sieve,” Opt. Lett. 30, 2976–2978 (2005). [CrossRef] [PubMed]
  14. G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46, 3706–3708 (2007). [CrossRef] [PubMed]
  15. G. E. Arzner, J. P. Delaboudinière, and X. Y. Song, “Photon sieves as EUV telescopes for solar orbiter,” Proc. SPIE 4853, 158–161 (2003). [CrossRef]
  16. J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281, 4536–4539 (2008). [CrossRef]
  17. F. Giménez, J. A. Monsoriu, W. D. Furlan, and A. Pons, “Fractal photon sieve,” Opt. Express 14, 11958–11963 (2006). [CrossRef] [PubMed]
  18. F. Giménez, W. D. Furlan, and J. A. Monsoriu, “Lacunar fractal photon sieves,” Opt. Commun. 277, 1–4 (2007). [CrossRef]
  19. H.-H. Chung, N. M. Bradman, M. R. Davidson, and P. H. Holloway, “Dual wavelength photon sieves,” Opt. Eng. (Bellingham) 47, 118001 (2008). [CrossRef]
  20. Y. Liu, H. Dai, X. Sun, and T. J. Huang, “Electrically switchable phase-type fractal zone plates and fractal photon sieves,” Opt. Express 17, 12418–12423 (2009). [CrossRef] [PubMed]
  21. C. Zhou, X. Dong, L. Shi, C. Wang, and C. Du, “Experimental study of a multiwavelength photon sieve designed by random-area-divided approach,” Appl. Opt. 48, 1619–1623 (2009). [CrossRef] [PubMed]
  22. J. Jia and C. Xie, “Phase zone photon sieve,” Chin. Phys. B 18, 183–188 (2009). [CrossRef]
  23. J. E. Harvey, “Fourier treatment of near-field scalar diffraction theory,” Am. J. Phys. 47, 974–980 (1979). [CrossRef]
  24. W. H. Southwell, “Validity of the Fresnel approximation in the near field,” J. Opt. Soc. Am. 71, 7–14 (1981). [CrossRef]
  25. C. J. R. Sheppard and M. Hrynevych, “Diffraction by circular aperture: a generalization of Fresnel diffraction theory,” J. Opt. Soc. Am. A 9, 274–281 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited