OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Importance sampling the Rayleigh phase function

Jeppe Revall Frisvad  »View Author Affiliations


JOSA A, Vol. 28, Issue 12, pp. 2436-2441 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002436


View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature. This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation.

© 2011 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(290.4210) Scattering : Multiple scattering
(290.5870) Scattering : Scattering, Rayleigh
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Scattering

History
Original Manuscript: August 4, 2011
Revised Manuscript: September 23, 2011
Manuscript Accepted: September 23, 2011
Published: November 10, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Jeppe Revall Frisvad, "Importance sampling the Rayleigh phase function," J. Opt. Soc. Am. A 28, 2436-2441 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-28-12-2436


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. D. Tilley, Colour and the Optical Properties of Materials, 2nd ed. (Wiley, 2011).
  2. G. N. Plass and G. W. Kattawar, “Radiative transfer in an atmosphere–ocean system,” Appl. Opt. 8, 455–466 (1969). [CrossRef] [PubMed]
  3. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, 1976).
  4. T. Deutschmann, S. Beirle, U. Friess, M. Grzegorski, C. Kern, L. Kritten, U. Platt, C. Prados-Román, J. Puķīte, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011). [CrossRef]
  5. A. Kienle, F. K. Forster, and R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,” Opt. Lett. 26, 1571–1573 (2001). [CrossRef]
  6. A. Krishnaswamy and G. V. G. Baranoski, “A study on skin optics,” Tech. Rep. CS-2004-01 (University of Waterloo, 2004).
  7. M. W. Y. Lam and G. V. G. Baranoski, “A predictive light transport model for the human iris,” Comput. Graph. Forum 25, 359–368 (2006). [CrossRef]
  8. G. V. G. Baranoski and A. Krishnaswamy, “Light interaction with human skin: from believable images to predictable models,” SIGGRAPH Asia 2008, Course Notes (2008).
  9. G. V. G. Baranoski and A. Krishnaswamy, Light & Skin Interactions: Simulations for Computer Graphics Applications (Morgan Kaufmann/Elsevier, 2010).
  10. B. W. Whitney and L. Hartmann, “Model scattering envelopes of young stellar objects. I. Method and application to circumstellar disks,” Astrophys. J. 395, 529–539 (1992). [CrossRef]
  11. S. Seager, B. A. Whitney, and D. D. Sasselov, “Photometric light curves and polarization of close-in extrasolar giant planets,” Astrophys. J. 540, 504–520 (2000). [CrossRef]
  12. S. Lallich, F. Enguehard, and D. Baillis, “Radiative properties of silica nanoporous matrices,” Int. J. Thermophys. 29, 1395–1407(2008). [CrossRef]
  13. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Ann. Astrophys. 3, 117–137 (1940). Also in Astrophys. J. 93, 70–83 (1941).
  14. W. M. Cornette and J. G. Shanks, “Physically reasonable analytical expression for the single-scattering phase function,” Appl. Opt. 31, 3152–3160 (1992). [CrossRef] [PubMed]
  15. Q. Liu and F. Weng, “Combined Henyey–Greenstein and Rayleigh phase function,” Appl. Opt. 45, 7475–7479 (2006). [CrossRef] [PubMed]
  16. J. W. Strutt, “On the light from the sky, its polarization and colour,” Philos. Mag. 41, 107–120, 274–279 (1871). Reprinted in John William Strutt (Baron Rayleigh), Scientific Papers (Cambridge University, 1899), Vol. 1, No. 8, pp. 87–103.
  17. S. Chandrasekhar, Radiative Transfer (Oxford, 1950).
  18. J. von Neumann, “Various techniques used in connection with random digits,” in Monte Carlo Method, A.S.Householder, ed., Vol. 12 of Applied Mathematics Series (National Bureau of Standards, 1951), Chap. 13, pp. 36–38.
  19. M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley, 1986), Vol. 1. [CrossRef]
  20. M. Pharr and G. Humphreys, Physically Based Rendering: From Theory to Implementation (Morgan Kaufmann/Elsevier, 2004).
  21. J. F. Hughes and T. Möller, “Building an orthonormal basis from a unit vector,” J. Graphics Tools 4, 33–35 (1999).
  22. “Cubic function,” Wikipedia, http://en.wikipedia.org/wiki/Cubic_function.
  23. D. E. Knuth, The Art of Computer Programming, 2nd ed.(Addison-Wesley, 1998), Vol.  3.
  24. G. Marsaglia, “Yet another RNG” (1994). Posted to the Usenet group sci.stat.math.
  25. G. Marsaglia, “Random number generators,” J. Mod. Appl. Stat. Meth. 2, 2–13 (2003).
  26. S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich, “OptiX: a general purpose ray tracing engine,” ACM Trans. Graph. 29, 1–13 (2010). [CrossRef]
  27. “NVIDIA OptiX 2 ray tracing engine,” http://developer.nvidia.com/optix.
  28. M. Matsumoto and T. Nishimaru, “Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator,” ACM Trans. Model. Comput. Simul. 8, 3–30 (1998). [CrossRef]
  29. “Mersenne Twister,” http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.
  30. W. Kahan, “Computing a real cube root,” lecture notes (1991), http://www.cims.nyu.edu/~dbindel/class/cs279/qbrt.pdf. Retypeset by D. Bindel, April 2001.
  31. O. E. Lancaster, “Machine method for the extraction of cube root,” J. Am. Stat. Assoc. 37, 112–115 (1942). [CrossRef]
  32. Metamerist, “In search of a fast cube root,” http://metamerist.com/cbrt/cbrt.htm.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited