OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: D k -CARS. I. Axial interfaces

David Gachet and Hervé Rigneault  »View Author Affiliations


JOSA A, Vol. 28, Issue 12, pp. 2519-2530 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002519


View Full Text Article

Enhanced HTML    Acrobat PDF (992 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a full vectorial theoretical investigation of the chemical interface detection in conventional coherent anti-Stokes Raman scattering (CARS) microscopy. In Part I, we focus on the detection of axial interfaces (i.e., parallel to the optical axis) following a recent experimental demonstration of the concept [ Phys. Rev. Lett. 104, 213905 (2010)]. By revisiting the Young’s double slit experiment, we show that background-free microscopy and spectroscopy is achievable through the angular analysis of the CARS far-field radiation pattern. This differential CARS in k space ( D k -CARS) technique is interesting for fast detection of interfaces between molecularly different media. It may be adapted to other coherent and resonant scattering processes.

© 2011 Optical Society of America

OCIS Codes
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: August 25, 2011
Manuscript Accepted: September 19, 2011
Published: November 11, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
David Gachet and Hervé Rigneault, "Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS. I. Axial interfaces," J. Opt. Soc. Am. A 28, 2519-2530 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-28-12-2519


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007). [CrossRef]
  2. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008). [CrossRef] [PubMed]
  3. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009). [CrossRef] [PubMed]
  4. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11, 033026 (2009). [CrossRef]
  5. C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011). [CrossRef] [PubMed]
  6. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman scattering microscope,” Opt. Lett. 7, 350–352 (1982). [CrossRef] [PubMed]
  7. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  8. H. Lotem, R. T. Lynch, Jr., and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14, 1748–1755 (1976). [CrossRef]
  9. M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. A 10, 4447–4463 (1974).
  10. D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett. 92, 123905 (2004). [CrossRef] [PubMed]
  11. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 480–482 (2006). [CrossRef] [PubMed]
  12. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility for vibrational microscopy,” Opt. Lett. 29, 2923–2925 (2004). [CrossRef]
  13. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006). [CrossRef] [PubMed]
  14. E. R. Andresen, S. R. Keiding, and E. O. Potma, “Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy,” Opt. Express 14, 7246–7251 (2006). [CrossRef] [PubMed]
  15. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009). [CrossRef] [PubMed]
  16. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14, 3622–3630 (2006). [CrossRef] [PubMed]
  17. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Krönig transform,” Opt. Lett. 34, 1363–1365 (2009). [CrossRef] [PubMed]
  18. D. Oron, N. Dudovich, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88, 063004 (2002). [CrossRef] [PubMed]
  19. D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002). [CrossRef]
  20. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902(2003). [CrossRef] [PubMed]
  21. S.-H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803(R) (2005). [CrossRef]
  22. S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110, 5196–5204 (2006). [CrossRef] [PubMed]
  23. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872–1874 (2006). [CrossRef] [PubMed]
  24. V. V. Krishnamachari and E. O. Potma, “Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation,” J. Opt. Soc. Am. A 24, 1138–1147 (2007). [CrossRef]
  25. V. V. Krishnamachari and E. O. Potma, “Imaging chemical interfaces perpendicular to the optical axis with focus-engineered coherent anti-Stokes Raman scattering microscopy,” Chem. Phys. 341, 81–88 (2007). [CrossRef]
  26. V. V. Krishnamachari and E. O. Potma, “Multi-dimensional differential imaging with FE-CARS microscopy,” Vib. Spectrosc. 50, 10–14 (2009). [CrossRef]
  27. D. Gachet, S. Brustlein, and H. Rigneault, “Revisiting the Young’s double slit experiment for background-free nonlinear Raman spectroscopy and microscopy,” Phys. Rev. Lett. 104, 213905 (2010). [CrossRef] [PubMed]
  28. D. Gachet, H. Rigneault, and S. Brustlein, “Méthode pour la détection d’un signal optique non linéaire résonant et dispositif pour la mise en oeuvre de ladite méthode (I),” Brevet CNRS, international patent application (INPI No10/00245)—Extension PCT/EP2011/050622 (22/01/2010)
  29. R. W. Hellwarth, “Third-order optical susceptibilities of solids and liquids,” Prog. Quantum Electron. 5, 1–68 (1977). [CrossRef]
  30. J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009). [CrossRef]
  31. J. Lin, F. Lu, H. Wang, and Z. Huang, “Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging,” Appl. Phys. Lett. 97, 083701 (2010). [CrossRef]
  32. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002). [CrossRef]
  33. D. Gachet, N. Sandeau, and H. Rigneault, “Influence of the Raman depolarisation ratio on far-field radiation patterns in coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Eur. Opt. Soc. Rapid Pub. 1, 06013 (2006). [CrossRef]
  34. D. Gachet, F. Billard, and H. Rigneault, “Background-free coherent anti-Stokes Raman spectroscopy near transverse interfaces: a vectorial study,” J. Opt. Soc. Am. B 25, 1655–1666 (2008). [CrossRef]
  35. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  36. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system,” Proc. R. Soc. London Series A 253, 358–379 (1959). [CrossRef]
  37. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  38. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  39. D. Gachet, F. Billard, N. Sandeau, and H. Rigneault, “Coherent anti-Stokes Raman scattering (CARS) microscopy imaging at interfaces: evidence of interference effects,” Opt. Express 15, 10408–10420 (2007). [CrossRef] [PubMed]
  40. G. W. H. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono- and bilayers with multiplex CARS,” J. Phys. Chem. B 108, 3400–3403(2004). [CrossRef]
  41. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16012 (2005). [CrossRef] [PubMed]
  42. N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in coherent anti-Stokes Raman scattering (CARS) microscopy,” Appl. Opt. 45, 7005 (2006). [CrossRef] [PubMed]
  43. D. Gachet, F. Billard, and H. Rigneault, “Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. A 77, 061802(R) (2008). [CrossRef]
  44. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002). [CrossRef] [PubMed]
  45. D. Akimov, S. Chatzipapadopoulos, T. Meyer, N. Tarcea, B. Dietzek, M. Schmitt, and J. Popp, “Different contrast information obtained from CARS and nonresonant FWM images,” J. Raman Spectrosc. 40, 941–947 (2009). [CrossRef]
  46. C. Liu and D. Y. Kim, “Differential imaging in coherent anti-Stokes Raman scattering microscopy with Laguerre-Gaussian excitation beams,” Opt. Express 15, 10123–10134 (2007). [CrossRef]
  47. C. Liu, S. Veetil, and D. Y. Kim, “Differential imaging in coherent anti-Stokes Raman scattering microscopy II: a filter-assisted Laguerre-Gaussian beam detection scheme,” Opt. Express 15, 12050–12059 (2007). [CrossRef]
  48. D. Gachet and H. Rigneault, “Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: D-CARS. II. Arbitrary interfaces,” J. Opt. Soc. Am. A 28, 2531–2539 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited