OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Generalized spectral decomposition: a theory and practice to spectral reconstruction

Shahram Peyvandi and Seyed Hossein Amirshahi  »View Author Affiliations

JOSA A, Vol. 28, Issue 8, pp. 1545-1553 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The generalized spectral decomposition (GSD) theorem is introduced, and the generalized fundamental stimulus and metameric black are analyzed to show how they convey the valuable features in terms of color information. The suggestion would be considered as the generalization of Cohen and Kappauf’s matrix R theory and its later application in parameric correction by Fairman. The GSD theorem provides a modular model whose arguments can be elaborately set up for high-performance spectral recovery. It is also shown that the suggested methods for spectral decomposition and/or spectral reconstruction proposed by different researchers could be considered as special cases of GSD.

© 2011 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1710) Vision, color, and visual optics : Color, measurement
(330.1730) Vision, color, and visual optics : Colorimetry

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: November 30, 2010
Revised Manuscript: May 16, 2011
Manuscript Accepted: May 16, 2011
Published: July 6, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Shahram Peyvandi and Seyed Hossein Amirshahi, "Generalized spectral decomposition: a theory and practice to spectral reconstruction," J. Opt. Soc. Am. A 28, 1545-1553 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Wyszecki, “Valenzmetrische Untersuchung des Zusammenhanges zwischen normaler und anomaler Trichromasie(Psychophysical investigation of relationship between normal and abnormal trichromatic vision),” Farbe 2, 39–52 (1953).
  2. J. B. Cohen and W. E. Kappauf, “Metameric color stimuli, fundamental metamers, and Wyszecki’s metameric blacks,” Am. J. Psychol. 95, 537–564 (1982). [CrossRef] [PubMed]
  3. J. B. Cohen and W. E. Kappauf, “Color mixture and fundamental metamers: theory, algebra, geometry, application,” Am. J. Psychol. 98, 171–259 (1985). [CrossRef]
  4. J. B. Cohen, “Color and color mixture: scalar and vector fundamentals,” Color Res. Appl. 13, 5–39 (1988). [CrossRef]
  5. J. B. Cohen, Visual Color and Color Mixture: The Fundamental Color Space (University of Illinois Press, 2001).
  6. Y. Zhao and R. S. Berns, “Image-based spectral reflectance reconstruction using the matrix R method,” Color Res. Appl. 32, 343–351 (2007). [CrossRef]
  7. H. S. Fairman, “Metameric correction using parameric decomposition,” Color Res. Appl. 12, 261–265 (1987). [CrossRef]
  8. H. S. Fairman, “Recommended terminology for matrix R and metamerism,” Color Res. Appl. 16, 337–341 (1991). [CrossRef]
  9. Z. Li and R. S. Berns, “Comparison of methods of parameric correction for evaluating metamerism,” Color Res. Appl. 32, 293–303 (2007). [CrossRef]
  10. J. A. Worthey, “Calculation of metameric reflectances,” Color Res. Appl. 13, 76–84 (1988). [CrossRef]
  11. S. A. Burns, J. B. Cohen, and E. N. Kuznetsov, “Multiple metamers: preserving color matches under diverse illuminants,” Color Res. Appl. 14, 16–22 (1989). [CrossRef]
  12. H. J. Trussell, “Applications of set theoretic methods to color systems,” Color Res. Appl. 16, 31–41 (1991). [CrossRef]
  13. G. D. Finlayson and P. Morovic, “Metamer sets,” J. Opt. Soc. Am. A 22, 810–819 (2005). [CrossRef]
  14. P. Urban and R. R. Grigat, “Metamer density estimated color correction,” Signal Image Video Process. 3, 171–182 (2009). [CrossRef]
  15. P. Urban, R. S. Berns, and R. R. Grigat, “Color correction by considering the distribution of metamers within the mismatch gamut,” in Fifteenth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (Society for Imaging Sciences and Technology, 2007), pp. 222–227. [PubMed]
  16. M. W. Derhak and M. R. Rosen, “Spectral colorimetry using LabPQR: an interim connection space,” J. Imaging Sci. Technol. 50, 53–63 (2006). [CrossRef]
  17. S. Tsutsumi, M. R. Rosen, and R. S. Berns, “Spectral color reproduction using an interim connection space-based lookup table,” J. Imaging Sci. Technol. 52, 040201–040213 (2008). [CrossRef]
  18. S. Tsutsumi, M. R. Rosen, and R. S. Berns, “Spectral color management using interim connection spaces based on spectral decomposition,” Color Res. Appl. 33, 282–299 (2008). [CrossRef]
  19. H. Kotera, “FCS-based prediction in color changes under different illuminants,” in Proceedings of AIC 2007, Color Science for Industry, Midterm Meeting of the International Color Association (International Color Association, 2007), pp. 134–137.
  20. H. Kotera, “Geometrical structures of fundamental color space,” in Proceedings of AIC 2007, Color Science for Industry, Midterm Meeting of the International Color Association, (International Color Association, 2007), pp. 130–133.
  21. H. Abdi, “Eigen-decomposition: eigenvalues and eigenvecteurs,” in Encyclopedia of Measurement and Statistics, N.J.Salkind, ed. (Sage, 2007), pp. 304–308.
  22. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 5th ed. (Prentice-Hall, 2002).
  23. D.-Y. Tzeng and R. S. Berns, “A review of principal component analysis and its applications to color technology,” Color Res. Appl. 30, 84–98 (2005). [CrossRef]
  24. H. S. Fairman and M. H. Brill, “The principal components of reflectances,” Color Res. Appl. 29, 104–110 (2004). [CrossRef]
  25. J. E. Gentle, Matrix Algebra: Theory, Computations, and Applications in Statistics, Springer Texts in Statistics(Springer, 2007). [PubMed]
  26. C. D. Meyer, Matrix Analysis and Applied Linear Algebra, 1st ed. (SIAM, 2000). [CrossRef]
  27. J. A. Worthey and M. H. Brill, “Principal components applied to modeling: dealing with the mean vector,” Color Res. Appl. 29, 261–266 (2004). [CrossRef]
  28. S. Peyvandi and S. H. Amirshahi, “Paramerism and reliable parameric correction,” Color Res. Appl., doi:10.1002/col.20642 (to be published). [CrossRef]
  29. Spectral Database, University of Joensuu Color Group, http://spectral.joensuu.fi/.
  30. A. Hard and L. Sivik, “NCS—Natural Color System: a Swedish standard for coloer notation,” Color Res. Appl. 6, 129–138(1981). [CrossRef]
  31. A. Garcia-Beltran, J. L. Nieves, J. Hernandez-Andrés, and J. Romero, “Linear bases for spectral reflectance functions of acrylic paints,” Color Res. Appl. 23, 39–45 (1998). [CrossRef]
  32. M. S. Drew and B. V. Funt, “Natural metamers,” CVGIP Image Underst. 56, 139–151 (1992). [CrossRef]
  33. S. Zuffi, S. Santini, and R. Schettini, “From color sensor space to feasible reflectance spectra,” IEEE Trans. Signal Process. 56, 518–531 (2008). [CrossRef]
  34. C. Li and M. R. Luo, “The estimation of spectral reflectances using the smoothest constraint condition,” in Ninth Color Imaging Conference: Color Science and Engineering: Systems, Technologies, and Applications (Imaging Sciences and Technology, 2001), pp. 62–67. [PubMed]
  35. C. van Trigt, “Smoothest reflectance functions. I. Definition and main results,” J. Opt. Soc. Am. A 7, 1891–1904 (1990). [CrossRef]
  36. C. van Trigt, “Smoothest reflectance functions. II. Complete results,” J. Opt. Soc. Am. A 7, 2208–2222 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited