OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Refined flicker photometry technique to measure ocular lens density

Petteri Teikari, Raymond P. Najjar, Kenneth Knoblauch, Dominique Dumortier, Pierre-Loïc Cornut, Philippe Denis, Howard M. Cooper, and Claude Gronfier  »View Author Affiliations

JOSA A, Vol. 29, Issue 11, pp. 2469-2478 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (638 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Many physiological and pathological conditions are associated with a change in the crystalline lens transmittance. Estimates of lens opacification, however, generally rely on subjective rather than objective measures in clinical practice. The goal of our study was to develop an improved psychophysical heterochromatic flicker photometry technique combined with existing mathematical models to evaluate the spectral transmittance of the human ocular media noninvasively. Our results show that it is possible to accurately estimate ocular media density in vivo in humans. Potential applications of our approach include basic research and clinical settings on visual and nonimage-forming visual systems.

© 2012 Optical Society of America

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7323) Vision, color, and visual optics : Visual optics, aging changes

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: September 21, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: September 27, 2012
Published: October 24, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Petteri Teikari, Raymond P. Najjar, Kenneth Knoblauch, Dominique Dumortier, Pierre-Loïc Cornut, Philippe Denis, Howard M. Cooper, and Claude Gronfier, "Refined flicker photometry technique to measure ocular lens density," J. Opt. Soc. Am. A 29, 2469-2478 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B 366, 1278–1292 (2011). [CrossRef]
  2. D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Visual Res. 14, 1237–1244 (1974). [CrossRef]
  3. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987). [CrossRef]
  4. P. Sample, F. Esterson, R. Weinreb, and R. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
  5. C. A. Johnson, D. L. Howard, D. Marshall, and H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993). [CrossRef]
  6. B. R. Wooten, B. R. Hammond, and L. M. Renzi, “Using scotopic and photopic flicker to measure lens optical density,” Ophthalmic Physiol. Opt. 27, 321–328 (2007). [CrossRef]
  7. J. Dillon, L. Zheng, J. C. Merriam, and E. R. Gaillard, “Transmission of light to the aging human retina: possible implications for age related macular degeneration,” Exp. Eye Res. 79, 753–759 (2004). [CrossRef]
  8. A. E. Broendsted, M. Stormly Hansen, H. Lund-Andersen, B. Sander, and L. Kessel, “Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination,” Ophthalmol. Res. 46, 118–124 (2011). [CrossRef]
  9. J. van de Kraats and D. van Norren, “Optical density of the aging human ocular media in the visible and the UV,” J. Opt. Soc. Am. A 24, 1842–1857 (2007). [CrossRef]
  10. H. J. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. Lond. Ser. B 220, 115–130 (1983). [CrossRef]
  11. M. S. Griswold and W. S. Stark, “Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet,” Vis. Res. 32, 1739–1743 (1992). [CrossRef]
  12. G. Wald, “The photochemistry of vision,” Doc. Ophthalmol. 3, 94–137 (1949). [CrossRef]
  13. V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Vis. Neurosci. 17, 509–528 (2000). [CrossRef]
  14. T. W. Kraft, D. M. Schneeweis, and J. L. Schnapf, “Visual transduction in human rod photoreceptors,” J. Physiol. 464, 747–765 (1993).
  15. T. Lamb, “Photoreceptor spectral sensitivities: common shape in the long-wavelength region,” Vis. Res. 35, 3083–3091 (1995). [CrossRef]
  16. N. Pousset, B. Rougi, and A. Razet, “Impact of current supply on LED colour,” Lighting Res. Technol. 42, 371–383 (2010). [CrossRef]
  17. D. Dumortier, B. Coutelier, T. Faulcon, and F. Roy, “PHOTOLUX: a new luminance mapping system based on Nikon Coolpix digital cameras,” in Proceedings of Lux Europa (Lux Europa, 2005), pp. 308–311.
  18. O. A. R. Mahroo and T. D. Lamb, “Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics,” J. Physiol. 554, 417–437 (2003). [CrossRef]
  19. O. Howells, F. Eperjesi, and H. Bartlett, “Measuring macular pigment optical density in vivo: a review of techniques,” Graefes Arch. Clin. Exp. Ophthalmol. 249, 315–347 (2011). [CrossRef]
  20. N. P. A. Zagers and D. van Norren, “Absorption of the eye lens and macular pigment derived from the reflectance of cone photoreceptors,” J. Opt. Soc. Am. A 21, 2257–2268 (2004). [CrossRef]
  21. S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25, 819–840 (1942). [CrossRef]
  22. C. J. Bassi and M. K. Powers, “Daily fluctuations in the detectability of dim lights by humans,” Physiol. Behav. 38, 871–877 (1986). [CrossRef]
  23. J. D. Conner, “The temporal properties of rod vision,” J. Physiol. 332, 139–155 (1982).
  24. H. E. Ives, “Critical frequency relations in scotopic vision,” J. Opt. Soc. Am. 6, 254–267 (1922). [CrossRef]
  25. B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25, 315–319 (2005). [CrossRef]
  26. K. O’Brien, B. Smollon, B. Wooten, and B. Hammond, “Determining heterochromatic flicker photometry frequency for macular pigment optical densitometry by critical flicker fusion frequency,” J. Vis. 11, 55–55 (2011). [CrossRef]
  27. R. Nygaard and T. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vis. Res. 25, 115–127 (1985). [CrossRef]
  28. R. Gortlemeyer and H. Wieman, “Retest reliability and construct validity of critical flicker fusion frequency,” Pharmacopsychiatry 15, 24–28 (1982). [CrossRef]
  29. R. A. Bone and J. T. Landrum, “Heterochromatic flicker photometry,” Arch. Biochem. Biophys. 430, 137–142 (2004). [CrossRef]
  30. J. S. Werner, S. K. Donnelly, and R. Kliegl, “Aging and human macular pigment density,” Vis. Res. 27, 257–268 (1987). [CrossRef]
  31. J. L. Barbur, E. Konstantakopoulou, M. Rodriguez-Carmona, J. A. Harlow, A. G. Robson, and J. D. Moreland, “The macular assessment profile test—a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity,” Ophthalmic Physiol. Opt. 30, 470–483 (2010). [CrossRef]
  32. G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–249 (1958). [CrossRef]
  33. W. Rushton, “Visual pigments in man,” in Handbook of Sensory Physiology. Photochemistry of Vision, H. J. A. Dartnall, ed. (Springer, 1972), pp. 481–528.
  34. H. J. A. Dartnall, “The interpretation of spectral sensitivity curves,” Brit. Med. Bull. 9, 24–30 (1953).
  35. M. Alpern, A. B. Fulton, and B. N. Baker, “Self-screening of rhodopsin in rod outer segments,” Vis. Res. 27, 1459–1470 (1987). [CrossRef]
  36. D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “The photocurrent, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. 357, 575–607 (1984).
  37. E. J. Warrant and D. Nilsson, “Absorption of white light in photoreceptors,” Vis. Res. 38, 195–207 (1998). [CrossRef]
  38. A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Vis. Sci. 32, 2676–2682 (1991).
  39. G. R. Jackson, C. Owsley, and G. McGwin, “Aging and dark adaptation,” Vis. Res. 39, 3975–3982 (1999). [CrossRef]
  40. T. F. Chen, G. V. G. Baranoski, and K. F. Lin, “Bulk scattering approximations for He–Ne laser transmitted through paper,” Opt. Express 16, 21762–21771 (2008). [CrossRef]
  41. D. M. Gakamsky, B. Dhillon, J. Babraj, M. Shelton, and S. D. Smith, “Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence,” J. R. Soc. Interface 8, 1616–1621 (2011). [CrossRef]
  42. W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994). [CrossRef]
  43. E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).
  44. L. Kolozsv, A. Ngrdi, B. Hopp, and Z. Bor, “UV absorbance of the human cornea in the 240- to 400 nm range,” Invest. Ophthalmol. Vis. Sci. 43, 2165–2168 (2002).
  45. R. C. Smith, and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981). [CrossRef]
  46. T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res. 37, 249–253 (1997). [CrossRef]
  47. E. R. Gaillard, L. Zheng, J. C. Merriam, and J. Dillon, “Age-related changes in the absorption characteristics of the primate lens,” Invest. Ophthalmol. Vis. Sci. 41, 1454–1459 (2000).
  48. H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Progr. Biophys. Mol. Biol. 86, 407–485 (2004). [CrossRef]
  49. D. van Norren and J. van de Kraats, “Spectral transmission of intraocular lenses expressed as a virtual age,” Br. J. Ophthalmol. 91, 1374–1375 (2007). [CrossRef]
  50. C. W. Tyler, “Two processes control variations in flicker sensitivity over the life span,” J. Opt. Soc. Am. A 6, 481–490 (1989). [CrossRef]
  51. C. B. Y. Kim and M. J. Mayer, “Foveal flicker sensitivity in healthy aging eyes. II. Cross-sectional aging trends from 18 through 77 years of age,” J. Opt. Soc. Am. A 11, 1958–1969 (1994). [CrossRef]
  52. R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).
  53. B. R. Hammond, J. E. Nanez, C. Fair, and D. M. Snodderly, “Iris color and age-related changes in lens optical density,” J. Ophthalmic Physiol. Opt. 20, 381–386 (2000). [CrossRef]
  54. K. Sagawa and Y. Takahashi, “Spectral luminous efficiency as a function of age,” J. Opt. Soc. Am. A 18, 2659–2667 (2001). [CrossRef]
  55. M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn, “In vivo quantification of the retinal reflectance spectral composition in elderly subjects before and after cataract surgery: implications for the non-visual effects of light,” J. Biol. Rhythms 25, 123–131 (2010). [CrossRef]
  56. A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999). [CrossRef]
  57. N. P. Cottaris, “Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology,” J. Opt. Soc. Am. A 20, 1694–1713 (2003). [CrossRef]
  58. W. N. Charman, “Age, lens transmittance, and the possible effects of light on melatonin suppression,” Ophthalmic Physiol. Opt. 23, 181–187 (2003). [CrossRef]
  59. F. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, and S. A. Burns, “Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry,” J. Opt. Soc. Am. A 18, 1212–1230 (2001). [CrossRef]
  60. J. Hammond, B. R. Wooten, and D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997). [CrossRef]
  61. S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).
  62. T. van den Berg and K. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vis. Res. 34, 1453–1456 (1994). [CrossRef]
  63. J. A. J. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vis. Res. 15, 1005–1009 (1975). [CrossRef]
  64. J. A. Van Best and E. V. Kuppens, “Summary of studies on the blue-green autofluorescence and light transmission of the ocular lens,” J. Biomed. Opt. 1, 243–250 (1996). [CrossRef]
  65. J. A. Zuclich, R. D. Glickman, and A. R. Menendez, “In situ measurements of lens fluorescence and its interference with visual function,” Invest. Ophthalmol. Vis. Sci. 33, 410–415 (1992).
  66. T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29, 345–350 (2009). [CrossRef]
  67. R. A. Weale, “Human lenticular fluorescence and transmissivity, and their effects on vision,” Exp. Eye Res. 41, 457–473 (1985).
  68. G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and other primates,” J. Physiol. 203, 411–417 (1969).
  69. N. T. Yu, M. Bando, and J. F. Kuck, “Fluorescence/Raman intensity ratio for monitoring the pathologic state of human lens,” Invest. Ophthalmol. Vis. Sci. 26, 97–101 (1985).
  70. R. A. Weale, “A theoretical link between lenticular absorbance and fluorescence,” Proc. Biol. Sci. 263, 1111–1116 (1996).
  71. T. J. van den Berg, “Quantal and visual efficiency of fluorescence in the lens of the human eye,” Invest. Ophthalmol. Vis. Sci. 34, 3566–3573 (1993).
  72. J. L. Brown, “Flash blindness,” Am. J. Ophthalmol. 60, 505–520 (1965).
  73. R. Gray, S. A. Perkins, R. Suryakumar, B. Neuman, and W. A. Maxwell, “Reduced effect of glare disability on driving performance in patients with blue light–filtering intraocular lenses,” J. Cataract Refract.Surg. 37, 38–44 (2011). [CrossRef]
  74. T. van den Berg, J. Ijspeert, and P. de Waard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991). [CrossRef]
  75. W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, and F. H. Schmidt, “The loss of light energy in retina and choroid,” Arch. Ophthalmol. 64, 606–615 (1960). [CrossRef]
  76. D. Snodderly, P. Brown, F. Delori, and J. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
  77. J. Bowmaker, S. Astell, D. Hunt, and J. Mollon, “Photosensitive and photostable pigments in the retinae of old world monkeys,” J. Exp. Biol. 156, 1–19 (1991).
  78. R. Hubbard and A. Kropf, “The action of light on rhodopsin,” Proc. Natl. Acad. Sci. USA 44, 130–139 (1958).
  79. C. Grimm, C. E. Rem, P. O. Rol, and T. P. Williams, “Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes,” Invest. Ophthalmol. Vis. Sci. 41, 3984–3990 (2000).
  80. P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001). [CrossRef]
  81. A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005). [CrossRef]
  82. J. Xu, J. Pokorny, and V. C. Smith, “Optical density of the human lens,” J. Opt. Soc. Am. A 14, 953–960 (1997). [CrossRef]
  83. M. Ozolinsh and P. Paulins, “LED based dual wavelength heterochromatic flicker method for separate evaluation of lutein and zeaxanthin in retina,” presented at the International Symposium on Biomedical Engineering and Medical Physics, 10–12 October 2012, Riga, Latvia.
  84. M. Potash and B. Jones, “Aging and decision criteria for the detection of tones in noise,” J. Gerontol. 14, 953–960(1997).
  85. D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295, 1070–1073 (2002). [CrossRef]
  86. O. Dkhissi-Benyahya, C. Gronfier, W. D. Vanssay, F. Flamant, and H. M. Cooper, “Modeling the role of mid-wavelength cones in circadian responses to light,” Neuron 53, 677–687 (2007). [CrossRef]
  87. L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited